Please wait a minute...
 
国土资源遥感  2000, Vol. 12 Issue (3): 16-24,37    DOI: 10.6046/gtzyyg.2000.03.03
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于谱学的成像光谱遥感技术发展与应用
张宗贵, 王润生
国土资源部航空物探遥感中心, 北京 100083
IMAGING SPECTROMETER REMOTE SENSING METHODOLOGICAL TECHNOLOGY AND IT'S APPLICATION BASED ON SPECTROSCOPY
ZHANG Zong-gui, WANG Run-sheng
Aero-Geophysical Survey and Remote Sensing Center, Ministry of Land and Resources, Beijing 100083, China
全文: PDF(767 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

成像光谱遥感技术是80年代初发展起来的新型遥感技术。近20年来,该技术发展很快,已成为遥感技术发展的3大趋势之一(成像光谱遥感,微波遥感及3S技术系统)。由于成像光谱具有高光谱分辨率的图像与光谱合二为一的特点,它的发展不仅使遥感技术能有效地直接识别地表物质,而且还能更深入地研究地表物质的成分及结构。本文综述成像光谱遥感技术的发展,理论基础,方法技术及其应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓浩
娄全胜
刘凯
毛立峰
陈斌
吕东伟
关键词  MOD 17生物质能选址低碳经济    
Abstract

In 1980s early, remote sensing technique of imaging spectrometer began to be developed as a new remote sensing technique. Recently, this technique has developed very fast, and has become one of the three development trends of remote sensing technique (imaging spectrometer, microwave and 3Ssystem). Because of these features of its high spectral resolution, hyperbands,and space image and spectra in one, developing the imaging spectrometer is not only able to more offectively and directly recognize the surface material of earth, but also it can more deeply research the component of making up material and it's structure. In this paper, the imaging spectrometer remote sensing technological development, the theoretical foundation, method and application are summarized.

Key words MOD 17    Bioenergy    Choice of locations    Low carbon economy
收稿日期: 2000-05-28      出版日期: 2011-08-02
作者简介: 张宗贵(1964-),男,高级工程师,现从事遥感的基础研究和方法技术研究工作。在国内外刊物上公开发表论文十余篇,其中核心刊物3篇,SCI检索1篇。
引用本文:   
张宗贵, 王润生. 基于谱学的成像光谱遥感技术发展与应用[J]. 国土资源遥感, 2000, 12(3): 16-24,37.
ZHANG Zong-gui, WANG Run-sheng . IMAGING SPECTROMETER REMOTE SENSING METHODOLOGICAL TECHNOLOGY AND IT'S APPLICATION BASED ON SPECTROSCOPY. REMOTE SENSING FOR LAND & RESOURCES, 2000, 12(3): 16-24,37.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2000.03.03      或      https://www.gtzyyg.com/CN/Y2000/V12/I3/16


[1] Gao B C, Goetz A F H. Column Atmospheric Water Vapour Retrievals from Airborne Imaging Spectrometer Data【J】. JGR 1990, 95D: 3549~3564.


[2] Goetz A F H, Gao B C, Wessman C A, et al. Estimation of Biochemical Constituents from Fresh Green Leaves by Spectral Matching Techniques
[C]. International Geoscience and Remote Sensing Symposium, the Proceedings of Remote Sensing Science for the Nineties(IGARS'90), College Park, Maryland, USA,1990, 2: 971~974.


[3] Miller J R, Freeamntle J R, Belarger M J, et al. Potential for Determination of Leaf Chlorophyll Content Using AVIRIS
[C]. Proceedings of the 2nd Airborone Visable-Infrared Imaging Spectrometer(AVIRIS), 1990.


[4] Kathryn S, Kierein-Young, Fred A Kruse. Quantitative Investigations of Geologic Surfaces Utilizing AVIRIS and AIRSAR Data for Death Valley California
[C]. Proceedings of the 8th Thematic Conference On Geologic Remote Sensing, Denver, Colorado, USA, 1991, 495~506.


[5] Kruse F A, Lefkoff A B. Knowledge-Based Geologic Mapping with Imaging Spectrometers【J】. Remote Sensing Reviews, 1993, 8: 3~28.


[6] Carrere V, Leprieur C, Gu X F. Atmospheric Correction and Ground Reflectance Recovery for AVIRIS Data: MAG Europe'91【J】. Photogrammetric & Remote Sensing, 1995, 61: 1233~1238.


[7] Charles Ichoku. A Review of Mixture Modeling Techiques for Subpixel Land Cover Estimation【J】. Remote Sensing Reviews, 1996, 13:161~163.


[8] Galen Gisler. Neural Network Identification of Spectral Signatures
[C]. the Proceedings of the 11th Thematic Conf. & Workshop on Applied Geologic Remote Sensing, Las Vegas, Nevada, 1996.


[9] Jin-II Kim. Estimation Class Mixture Proportion Within a Pixel Using the Fuzzy Partitioning Method
[C]. the Proceedings of 11th Thematic Conf. and Wokshop on Applied Geologic Remote Sensing,Las Vegas Nevada, 1996.


[10] Robert O Green, et al. Imaging Spectroscopy and AVIRIS【J】. Photogrammtric Engineering & Remote Sensing, 1998, 64: 227~248.


[11] 张兵,郑兰芬,童庆禧.成像光谱技术应用植被精细光谱分析
[R].遥感信息开放研究实验室年报,1997,323~327.


[12] 郭小方.成像光谱遥感地质研究的理论基础和数据生成处理方法技术研究
[D]:
[博士论文].北京:北京大学,1998.


[13] 王喜鹏,张养贞.应用神经网络模型分解混合像元【J】.遥感学报,1998,2(1):51~56.


[14] 吴培中.星载成像高光谱的特性与应用【J】.国土资源遥感,1999,(3):31~39.

[1] 赵龙贤, 代晶晶, 赵元艺, 姜琪, 刘婷玥, 傅明海. 基于RS和GIS技术的西藏多龙矿集区矿山选址研究[J]. 国土资源遥感, 2021, 33(2): 182-191.
[2] 张晓浩, 娄全胜, 刘凯. 基于遥感和GIS的生物质能集约化利用[J]. 国土资源遥感, 2010, 22(3): 1-6.
[3] 杨金中. 遥感技术在工程地质选址工作中的应用[J]. 国土资源遥感, 2007, 19(4): 90-94.
[4] 王瑞雪, 叶燎原. 利用现代“3S”技术阐释丽江古城选址的科学性[J]. 国土资源遥感, 2007, 19(1): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发