Please wait a minute...
 
国土资源遥感  2012, Vol. 24 Issue (4): 30-35    DOI: 10.6046/gtzyyg.2012.04.06
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
小麦生物量和真实叶面积指数的高光谱遥感估算模型
侯学会1,2, 牛铮1, 黄妮1, 许时光1
1. 中国科学院遥感与数字地球研究院遥感科学国家重点实验室,数字地球重点 实验室,北京 100094;
2. 中国科学院研究生院,北京 100049
The Hyperspectral Remote Sensing Estimation Models of Total Biomass and True LAI of Wheat
HOU Xue-hui1,2, NIU Zheng1, HUANG Ni1, XU Shi-guang1
1. The State Key Laboratory of Remote Sensing Science, Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
2. Graduate University of Chinese Academy of Science, Beijing 100049, China
全文: PDF(1966 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 利用大田小麦的参数数据和冠层光谱数据,基于光谱一阶微分技术和光谱响应函数,构建等效MODIS植被指数,建立小麦生物量(本文指总干生物量,下同)和真实叶面积指数的高光谱遥感估算模型。结果表明: 1小麦生物量与冠层光谱在552 nm,721 nm处呈现最显著相关关系,叶面积指数与冠层光谱的相关性在400~1 100 nm范围内较显著; 2红边位置与生物量的关系最为显著,相关系数R为0.818; 36种等效MODIS植被指数中,增强型植被指数对生物量最为敏感; 4红边位置估算小麦总生物量的指数模型最优,决定系数R2为0.829; 5增强型植被指数与小麦叶面积指数的指数模型拟合度最强,决定系数R2为0.94。利用实测光谱模拟MODIS等效反射率构建植被指数反演小麦参数的方法,可为利用卫星数据进行大面积、无破坏和及时获取地面植被信息研究提供重要手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王庆
曾琪明
廖静娟
关键词 非相干分解极化分解散射机制雷达植被指数    
Abstract:Based on the spectral first order differential techniques and equivalent MODIS vegetation index according to spectral response function using the field sampling survey, this paper built the hyperspectral remote sensing estimation models for total biomass and LAI of wheat named Jingdong 12. The research shows that: 1the largest correlation between total dry biomass and canopy spectra lies at 552 nm and 721 nm, and the relationship between LAI and canopy spectral is significant in the band range of 400~1 100 nm; 2the relationship between red edge position (REP) and wheat biomass is most significant, with R being 0.818; 3in the 6 vegetation indices similarly to MODIS-VI, EVI is most sensitive to total dry biomass; 4the linear model using REP estimation biomass is the best,with R2 being 0.669 4. Exponential model between LAI and EVI has the strongest fitting degree, with R2 being 0.94. Using field spectral data and band response function to retrieve wheat parameters can provide important research methods for making use of satellite remote sensing data characterized by large area, non-destruction and acquisition of timely ground vegetation information.
Key wordsnon-coherent decomposition    polarimetric decomposition    scattering mechanism    radar vegetation index
收稿日期: 2012-02-05      出版日期: 2012-11-13
: 

TP 79

 
基金资助:

国家重点基础研究发展规划项目(编号: 2013CB733405,2010CB950603)。

通讯作者: 牛铮(1965-),男,研究员,博士生导师,主要研究方向为全球变化遥感。E-mail: niuz@irsa.ac.cn。
引用本文:   
侯学会, 牛铮, 黄妮, 许时光. 小麦生物量和真实叶面积指数的高光谱遥感估算模型[J]. 国土资源遥感, 2012, 24(4): 30-35.
HOU Xue-hui, NIU Zheng, HUANG Ni, XU Shi-guang. The Hyperspectral Remote Sensing Estimation Models of Total Biomass and True LAI of Wheat. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 30-35.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2012.04.06      或      https://www.gtzyyg.com/CN/Y2012/V24/I4/30
[1] Chen J M,Josef C.Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images[J].Remote Sensing of Environment,1996,55(2),153-162.

[2] Bai J H,Li S K,Wang K R,et al.Estimating Aboveground Fresh Biomass of Different Cotton Canopy Types with Homogeneity Models Based on Hyper Spectrum Parameters[J].Agricultural Sciences in China,2007,6(4):437-445.

[3] 李卫国,赵春江,王纪华,等.遥感和生长模型相结合的小麦长势监测研究现状与展望[J].国土资源遥感,2007(2):6-9.

Li W G,Zhao C J,Wang J H,et al.Research Situation and Prospects of Wheat Condition Monitoring Based on Growth Model and Remote Sensing[J].Remote Sensing for Land and Resources,2007(2):6-9(in Chinese with English Abstract).

[4] Casanova D,Epema G F,Goudriaan J.Monitoring Rice Reflectance at Field Level for Estimating Biomass and LAI[J].Field Crops Research,1998,55(1/2):83-92.

[5] Hansen P M,Schjoerring J K.Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalized Difference Vegetation Indices and Partial Least Squares Regression[J].Remote Sensing of Environment,2003,86(4):542-553.

[6] Thenkabil P S,Smith R B,De Pauw E.Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics[J].Remote Sensing of Environment,2000,71(2):158-182.

[7] 宋开山,张柏,李方,等.高光谱反射率与大豆叶面积及地上鲜生物量的相关分析[J].农业工程学报,2005,21(1):36-40.

Song K S,Zhang B,Li F,et al.Correlative Analysis of Hyperspectral Reflectance,Soybean LAI and Above Ground Biomass[J].Transaction of the Chinese Society of Agricultural Engineering,2005,21(1):36-40(in Chinese with English Abstract).

[8] 黄春燕,王登伟,曹连莆,等.棉花地上鲜生物量的高光谱估算模型研究[J].农业工程学报,2007,23(3):131-135.

Huang C Y,Wang D K,Cao L P,et al.Models for Estimating Cotton Above Ground Fresh Biomass Using Hyperspectral Data[J].Transaction of the Chinese Society of Agricultural Engineering,2007,23(3):131-135(in Chinese with English Abstract).

[9] 柏军华,李少昆,王克如,等.基于近地高光谱棉花生物量遥感估算模型[J].作物学报,2007,33(2):311-316.

Bai J H,Li S K,Wang K R,et al.Estimation Models of Cotton Above Ground Fresh Biomass Based on Filed Hyperspectral Remote Sensing[J].Acta Agronomica Sinca,2007,33(2):311-316(in Chinese with English Abstract).

[10] 张霞,张兵,卫征,等.MODIS光谱指数监测小麦长势变化研究[J].中国图象图形学报,2005,10(4):420-424.

Zhang X,Zhang B,Wei Z,et al.Study on Spectral Indices of MODIS for Wheat Growth Monitoring[J].Journal of Image and Graphics,2005,10(4):420-424(in Chinese with English Abstract).

[11] 金剑,王光华,刘晓冰,等.作物生育期内光合碳在地下部的分配及转化[J].生态学杂志,2008,27(8):1393-1399.

Jin J,Wang G H,Liu X B,et al.Allocation and Transformation of Photosynthetic Carbon in Belowground Part of Crops During Their Growth Period:A Review[J].Chinese Journal of Ecology,2007,27(8):1393-1399(in Chinese with English Abstract).

[12] Huete A,Justice C,Leeuwen W V.MODIS Vegetation Index(MOD13)Version 3.Algorithm Theoretical Basis Document[M/OL].University of Vimginia,1999,32-33[2012-09-15].http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf.

[13] Danson F M,Plummer S E.Red-edge Response to Forest Leaf Area Index[J].International Journal of Remote Sensing,1995,16(1):183-188.

[14] Chen Q,Huang J F,Wang R C,et al.Analyses of the Correlation Between Rice LAI and Simulated MODIS Vegetation Indics,Red Edge Position[J] Transactions of the Chinese Society of Agricultural Engineering,19(5):104-108.

[15] 王大成,张东彦,赵晋陵,等.基于红边位置提取验证成像与非成像高光谱数据的一致性[J].光谱学与光谱分析,2011,31(9):2450-2454.

Wang D C,Zhang D Y,Zhao J L,et al.Using Extraction of Red Edge Position to Validate Consistency of Hyperspectral Imaging and Non-imaging Data[J].Spectroscopy and Spectral Analysis,2011,31(9):2450-2454(in Chinese with English Abstract).
[1] 冯娟, 丁建丽, 魏雯瑜. 基于雷达数据的区域土壤盐渍化监测[J]. 国土资源遥感, 2019, 31(1): 195-203.
[2] 何连, 秦其明, 任华忠. 一种自适应的混合Freeman/Eigenvalue极化分解模型[J]. 国土资源遥感, 2017, 29(2): 8-14.
[3] 祁帅, 张永红, 汪慧琴. 林火干扰区全极化SAR影像的散射特性分析[J]. 国土资源遥感, 2016, 28(2): 48-53.
[4] 何海燕, 凌飞龙, 汪小钦, 梁志锋. 基于雷达植被指数的水土流失区植被覆盖度估测[J]. 国土资源遥感, 2015, 27(4): 165-170.
[5] 王庆, 曾琪明, 廖静娟. 基于极化分解的极化特征参数提取与应用[J]. 国土资源遥感, 2012, 24(3): 103-110.
[6] 刘菊, 廖静娟, 沈国状. 基于全极化SAR数据反演鄱阳湖湿地植被生物量[J]. 国土资源遥感, 2012, 24(3): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发