Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (2): 97-103    DOI: 10.6046/gtzyyg.2017.02.14
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
轻小型机载LiDAR的航线设计
李佳俊1, 2, 钟若飞1, 2
1.首都师范大学资源环境与旅游学院,北京 100048;
2.首都师范大学三维信息 获取与应用教育部重点实验室,北京 100048
Route design of light airborne LiDAR
LI Jiajun1, 2, ZHONG Ruofei1, 2
1.College of Resource Environment and Tourism,Capital Normal University, Beijing 100048,China;
2.Key Laboratory of 3 D Information Acquisition and Application,Ministry of Education,Capital Normal University,Beijing 100048,China
全文: PDF(764 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为研究轻小型机载LiDAR的航线设计,以VUX-1型激光扫描仪为例,计算多周期回波(multi time around,MTA)对飞机作业高度的限制;根据要求的点云密度、扫描频率、扫描线速度等指标,依照航空摄影测量原理以及机载LiDAR数据获取规范,从中区别机载LiDAR与传统摄影测量学的不同,并借鉴机载LiDAR的数据采集方式与传统挂载专业相机的摄影测量的相似之处,判定在不同情形下激光的测距变化(例如测区内不同类型的目标反射率不同或大气能见度不同导致的最远测距能力的变化等); 在考虑以上问题基础上,对机载LiDAR系统进行航线设计;最后分别对比旁向点间距和航向点间距的误差,分析其原因并判定该航线设计方案的可行性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪金生
刘翔
杨劲林
潘健
苏晓玉
关键词 多源动态异构标绘信息内容整合    
Abstract

In this paper, the model VUX-1 laser was used as an example to calculate the influence of multitimearound(MTA) on the height of the aircraft. Then according to the requirements of the point cloud density, scanning frequency, scanning speed and other indicators, and in accordance with the principle of air aerial photogrammetry and LiDAR data acquisition specification, the difference between traditional photogrammetry and airborne LiDAR was distinguished, and a cue from traditional photogrammetry was used for reference. The changes of laser range under different conditions, such as the different types of targets in the test area,the different types of targets and the variation of the most remote ranging capability, were determined. By taking into account the above problems,a route for the airborne LiDAR system was designed. At last, the across track point spacing and the along track point spacing were calculated respectively for analyzing the reasons and determining the feasibility of the route design scheme.

Key wordsmulti-dynamic    plotting information    content integration
收稿日期: 2015-11-10      出版日期: 2017-05-03
基金资助:

国家自然科学基金项目“基于结构特征的车载激光扫描系统外方位元素在线标定方法研究”(编号: 41371434)和测绘地理信息公益性行业科研专项项目“新一代多平台多波段移动信息采集系统研制”(编号: 201412020)共同资助

作者简介: 李佳俊(1990-),男,硕士研究生,主要研究方向为车载、机载、船载移动测量系统集成和应用。Email: 1162077712@qq.com。
引用本文:   
李佳俊, 钟若飞. 轻小型机载LiDAR的航线设计[J]. 国土资源遥感, 2017, 29(2): 97-103.
LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.14      或      https://www.gtzyyg.com/CN/Y2017/V29/I2/97

[1] Dashora,Lohani B,Deb K.Two-step procedure of optimization for flight planning problem for airborne LiDAR data acquisition[J].International Journal of Mathematical Modelling and Numerical Optimisation,2013,4(4):323-350.
[2] 杨 晓,孙 钊.自触发脉冲激光测距飞行时间测量研究[J].电子设计工程,2012,20(1):110-112.
Yang X,Sun Z.Study on time-of-flight measurement of self-triggering pulsed laser ranging[J].Electronic Design Engineering,2012,20(1):110-112.
[3] 陈千颂,赵大龙,杨成伟,等.自触发脉冲飞行时间激光测距技术研究[J].中国激光,2004,31(6):745-748.
Chen Q S,Zhao D L,Yang C W,et al.Study on self-triggering pulsed time-of-flight laser rangefinding[J].Chinese Journal of Lasers,2004,31(6):745-748.
[4] Airborne Laser Scanner LMS-Q680(i) General Description[Z].Austria,2010.
[5] UAS/UAV Laser Scanner Riegl VUX-1 General Description and Data Interfaces[Z].Austria,2015.
[6] 国家测绘地理信息局.CH/T 8024—2011机载激光雷达数据获取技术规范[S].北京:测绘出版社,2012.
National Bureau of Surveying and Mapping Geographic Information.CH/T 8024—2011 Specifications for Data Acquisition of Airborne LIDAR[S].Beijing:Surveying and Mapping Publishing House,2012.
[7] 赖旭东.机载激光雷达基础原理与应用[M].北京:电子工业出版社,2010.
Lai X D.Basic Principles and Applications of Airborne LiDAR[M].Beijing:Electronic Industry Press,2010.
[8] Lohani B.Airborne Altimetric LiDAR:Principle, Data Collection,Processing and Applications[D].Kanpur:IIT Kanpur,2012.
[9] Jiang H B,Su Y Y,Jiao Q S,et al.Typical geologic disaster surveying in Wenchuan 8.0 earthquake zone using high resolution ground LiDAR and UAV remote sensing[C]//Proceedings of SPIE 9262,Lidar Remote Sensing for Environmental Monitoring XIV.Beijing,China:SPIE,2014:926219.

[1] 倪金生, 刘翔, 杨劲林, 李莹, 苏晓玉, 朱学山. 海量动态异构空间标绘信息实时接入技术[J]. 国土资源遥感, 2017, 29(2): 221-225.
[2] 倪金生, 刘翔, 杨劲林, 潘健, 苏晓玉. 多源动态异构空间标绘内容整合研究[J]. 国土资源遥感, 2017, 29(1): 208-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发