Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (2): 90-96    DOI: 10.6046/gtzyyg.2017.02.13
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于非高斯分布的全极化SAR数据无监督分类
许斌
四川信息职业技术学院电子工程系,广元 608040
Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution
XU Bin
Department of Electronic Engineering, Sichuan Information Technology College, Guangyuan 608040, China
全文: PDF(811 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 结合Freeman-Durden以散射模型为基础开发的分解算法和基于非高斯的K-Wishart分布,提出了一种无监督算法对全极化合成孔径雷达(fully polarimetric SAR,PolSAR)数据进行地物分类。该算法主要由3大步骤组成: 首先通过Freeman-Durden算法把PolSAR数据划分成3种散射: 表面散射、体散射和二面角散射,再使用形状参数χ将各种散射分为3类; 然后通过每个像元的8个邻域计算先验概率,以改进分类距离和计算聚类中心; 最后应用迭代K-Wishart分类器进行精确分类,并对每一类提出颜色填充方案。与复Wishart分布不同,K-wishart分布不但适合均匀区域数据描述,而且对不均匀区域数据的描述能力也很强。实验结果表明,该方法比Freeman-Durden分解和复Wishart分布组合具有更好的分类性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘哲
邱炳文
王壮壮
齐文
关键词 黄土高原遥感植被覆盖状态退耕还林/防风固沙    
Abstract:In this paper, an unsupervised algorithm is proposed to classify the data of fully polarimetric synthetic aperture Radar(PolSAR). The proposed method combines the Freeman-Durden with the scattering model based development of the decomposition algorithm and the K-Wishart distribution based on non Gauss. This is mainly composed of three steps. The first is the application of Freeman-Durden decomposition of the pixel to divide the scattering into three types: surface scattering, volume scattering and dihedral scattering, and then by using the shape parameter the scattering type can be divided into three types. After that, the eight neighborhood priori probabilities for each pixel are calculated to improve the classification distance and calculate the cluster centers. Finally, the iterative K-Wishart classifier is applied to PolSAR image for accurate classification and the color padding scheme. Different from Wishart distribution, the K-wishart distribution is not only suitable for uniform regional data description, but also very strong for the general uneven regional data description. The experiment results show that the proposed method has better classification performance than Freeman-Durden decomposition and complex Wishart distribution.
Key wordsLoess Plateau    remote sensing    vegetation coverage    returning farmland to forest and windbreak
收稿日期: 2015-10-28      出版日期: 2017-05-03
基金资助:四川省教育厅科技项目“多路信号智能集成测控系统设计”(编号: 2013SZB0836)资助
作者简介: 许 斌(1982-),男,硕士,工程师,主要从事通信与信息处理技术、SAR图像解译方面的研究。Email: xubin1982103@163.com。
引用本文:   
许斌. 基于非高斯分布的全极化SAR数据无监督分类[J]. 国土资源遥感, 2017, 29(2): 90-96.
XU Bin. Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 90-96.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.13      或      https://www.gtzyyg.com/CN/Y2017/V29/I2/90
[1] Shi L,Zhang L F,Yang J,et al.Supervised graph embedding for Polarimetric SAR image classification[J].IEEE Geoscience and Remote Sensing Letters,2013,10(2):216-220.
[2] Shang F,Hirose A.Use of Poincare sphere parameters for fast supervised PolSAR land classification[C]//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium.Melbourne,VIC:IEEE,2013:3175-3178.
[3] Wang S,Liu K,Pei J J,et al.Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):622-626.
[4] Zhang S,Wang S,Chen B,et al.Classification method for fully PolSAR data based on three novel parameters[J].IEEE Geoscience and Remote Sensing Letters,2014,11(8):39-44.
[5] Cloude S R,Pottier E.An entropy based classification scheme for land applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.
[6] Lee J S,Grunes M R,Ainsworth T L,et al.Unsupervised classification using polarimetric decomposition and the complex wishart classifier[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2249-2258.
[7] Lee J S,Grunes M R,Pottier E,et al.Unsupervised terrain classification preserving polarimetric scattering characteristics[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):722-731.
[8] Doulgeris A P,Anfinsen S N,Eltoft T.Classification with a non-Gaussian model for PolSAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(10):2999-3009.
[9] Doulgeris A P,Anfinsen S N,Eltoft T.Automated non-Gaussian clustering of polarimetric synthetic aperture radar images[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3665-3676.
[10] 任俊英,苏彩霞,曹永锋.基于中间层特征的全极化SAR监督地物分类[J].遥感技术与应用,2014,29(2):330-337.
Ren J Y,Su C X,Cao Y F.Supervised land-use classification of full polarization SAR image based on middle level feature[J].Remote Sensing Technology and Application,2014,29(2):330-337.
[11] Lee J S,Grunes M R,Kwok R.Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J].International Journal of Remote Sensing,1994,15(11):2299-2311.
[12] Lee J S,Grunes M R,de Grandi G.Polarimetric SAR speckle filtering and its implication for classification[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2363-2373.
[13] 陈 博,王 爽,焦李成,等.贝叶斯集成框架下的极化SAR图像分类[J].西安电子科技大学学报(自然科学版),2015,42(2):45-51.
Chen B,Wang S,Jiao L C,et al.Polarimetric SAR image classification via naive Bayes combination[J].Journal of Xidian University,2015,42(2):45-51.
[14] 赵力文,周晓光,蒋咏梅,等.一种基于Freeman分解与散射熵的极化SAR图像迭代分类方法[J].电子与信息学报,2008,30(1):2698-2701.
Zhao L W,Zhou X G,Jiang Y M,et al.Iterative classification of polarimetric SAR image based on Freeman decomposition and scattering entropy[J].Journal of Electronics & Information Technology,2008,30(1):2698-2701.
[15] 郁文贤,柳 彬,丁拥科,等.高分辨率、多时相SAR图像数据集的构建[J].测绘通报,2014(s1):119-122.
Yu W X,Liu B,Ding Y K,et al.Construction of high resolution multi-temporal SAR image dataset[J].Bulletin of Surveying and Mapping,2014(s1):119-122.
[16] 陈 博,王 爽,焦李成,等.利用0-1矩阵分解集成的极化SAR图像分类[J].电子与信息学报,2015,37(6):1495-1501.
Chen B,Wang S,Jiao L C,et al.Polarimetric SAR image classification via weighted ensemble based on 0-1 matrix decomposition[J].Journal of Electronics & Information Technology,2015,37(6):1495-1501.
[17] 钟微宇,沈 汀.结合多特征和SVM的SAR图像分割[J].计算机应用研究,2013,30(9):2846-2851.
Zhong W Y,Shen T.Multiple features and SVM combined SAR image segmentation[J].Application Research of Computers,2013,30(9):2846-2851.
[18] 杨学志,叶 铭,吴克伟,等.结构保持的双边滤波极化SAR图像降噪[J].电子与信息学报,2015,37(2):268-275.
Yang X Z,Ye M,Wu K W,et al.Speckle reduction for PolSAR image based on structure preserving bilateral filtering[J].Journal of Electronics & Information Technology,2015,37(2):268-275.
[19] 陈 军,杜培军,谭 琨,等.一种基于Pauli分解和支持向量机的全极化合成孔径雷达监督分类算法[J].科学技术与工程,2014,14(17):104-108,142.
Chen J,Du P J,Tan K,et al.A supervised classification algorithm based on Pauli decomposition and SVM on polarimetric SAR image[J].Science Technology and Engineering,2014,14(17):104-108,142.
[20] 马文婷,杨 健,高 伟,等.面向极化SAR图像配准的极化特征[J].清华大学学报(自然科学版),2014,54(2):270-274.
Ma W T,Yang J,Gao W,et al.Polarimetric feature for registration of polarimetric SAR images[J].Journal of Tsinghua University:Science and Technology,2014,54(2):270-274.
[21] 李崇谦.基于K-Wishart分布的极化SAR图像分类研究[D].西安:西安电子科技大学,2013.
Li C Q.Polarimetric SAR Image Classification Based on K-Wishart Distribution[D].Xi’an:Xidian University,2013.
[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发