Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 68-75    DOI: 10.6046/gtzyyg.2018.03.10
     本期目录 | 过刊浏览 | 高级检索 |
基于Triple Collocation方法的土壤湿度误差分析
吴凯, 舒红, 聂磊, 焦振航
武汉大学测绘遥感信息工程国家重点实验室,武汉 430079
Error analysis of soil moisture based on Triple Collocation method
Kai WU, Hong SHU, Lei NIE, Zhenhang JIAO
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
全文: PDF(3460 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤湿度作为水循环中重要的驱动参数之一,对天气变化有着显著影响。遥感技术的发展促使土壤湿度的大范围动态性观测变为可能,但对其误差的准确估计仍需进一步的研究。利用ASCAT散射计、AMSR-E辐射计反演得到的2种卫星遥感土壤湿度数据以及ERA-Interim土壤湿度再分析资料,通过三重组合(Triple Collocation, TC)方法得到了研究区域(15°N~55°N,73°E~135°E)3种土壤湿度数据的误差方差和信噪比估计,并结合MODIS土地覆盖类型数据分析了3种土壤湿度数据的误差特征。结果表明: 植被覆盖会影响遥感土壤湿度的TC误差方差估计; 从TC误差方差估计值来看,ERA土壤湿度精度最高,AMSR-E精度次之,ASCAT精度最低; 从信噪比来看,ASCAT土壤湿度信噪比最高,ERA的信噪比低于ASCAT高于AMSR-E,AMSR-E信噪比最低; 通过研究区MODIS土地覆盖类型数据与TC结果的分析可知TC结果多分布在草原、农田和裸地,TC结果比较符合客观实际情况。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴凯
舒红
聂磊
焦振航
关键词 土壤湿度误差估计Triple Collocation    
Abstract

As one of the important driving parameters in hydrologic cycle, soil moisture has remarkable effect on weather variations. The development of remote sensing technology makes large-area and dynamic soil moisture observation possible, but the accurate estimation of error in remote sensing soil moisture data remains to be further studied. Based on TC method, the authors used ERA-Interim reanalysis soil moisture data and soil moisture derived from ASCAT and AMSR-E in the study area (15°N~55°N,73°E~135°E) to estimate error variance and SNR (Signal Noise Ratio) of these three soil moisture data, and also employed MODIS land cover data to analyze the error characteristics of these three soil moisture data. Study results are as follows: vegetation cover has an influence on TC method to estimate error variance and SNR of remote sensing soil moisture data; From the perspective of error variance estimation, ERA soil moisture has the highest precision, AMSR-E possesses the second place, and ASCAT is the lowest; From the perspective of SNR, ASCAT soil moisture has the highest SNR, ERA’s SNR is higher than AMSR-E and lower than ASCAT, and AMSR-E has the lowest SNR. Mostly, TC result is distributed in grasslands, croplands and barren or sparsely vegetated area through analyzing TC result related to MODIS land cover data, and TC result corresponds to objective reality.

Key wordssoil moisture    error estimation    Triple Collocation
收稿日期: 2016-12-16      出版日期: 2018-09-10
:  TP237  
基金资助:武汉大学自主科研(学科交叉类)项目“陆面积雪数据同化中误差的时空统计分析”(2042016kf0176);中央高校基本科研业务费专项资金“时空统计及遥感数据同化研究”(2042016kf1035);国家科技支撑计划课题“小城市(镇)组群智慧规划建设与管理服务时空信息云平台”(2015BAJ05B01);“新疆自然科学面上基金项目”(2013211A014)
作者简介: 吴 凯(1990-),男,博士研究生,主要从事遥感数据同化方面研究。Email: 932361864@qq.com。
引用本文:   
吴凯, 舒红, 聂磊, 焦振航. 基于Triple Collocation方法的土壤湿度误差分析[J]. 国土资源遥感, 2018, 30(3): 68-75.
Kai WU, Hong SHU, Lei NIE, Zhenhang JIAO. Error analysis of soil moisture based on Triple Collocation method. Remote Sensing for Land & Resources, 2018, 30(3): 68-75.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.10      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/68
Fig.1  2010年研究区域MODIS土地覆盖类型
Fig.2  研究区ERA,ASCAT及AMSR-E土壤湿度数据间相关系数
Fig.3  研究区ERA,ASCAT和AMSR-E土壤湿度误差σ的空间分布及对应的直方图
参数 μ估计值 μ置信区间 σ估计值 σ置信区间
ERA 4.920 9 [4.888 0,
4.953 9]
1.727 6 [1.704 6,
1.751 2]
ASCAT 12.728 9 [12.6437,
12.81 4]
4.468 4 [4.409 0,
4.529 4]
AMSR-E 5.214 6 [5.141 5,
5.287 7]
3.834 5 [3.783 6,
3.886 9]
Tab.1  ERA,ASCAT和AMSR-E土壤湿度误差的正态分布参数及区间估计(α=0.05)
Fig.4  研究区ERA,ASCAT和AMSR-E土壤湿度fMSE空间分布及对应的直方图
类型 ERA ASCAT AMSR-E
min~Q1 Q1~Q3 Q3~max min~Q1 Q1~Q3 Q3~max min~Q1 Q1~Q3 Q3~max
常绿阔叶林 65 51 19 18 79 38 0 25 110
混交林 147 148 68 33 129 201 1 40 322
稀疏灌丛 17 50 36 31 49 23 32 70 1
多树草原 199 306 77 180 311 91 4 278 300
草原 1 207 2 639 789 792 2 483 1 360 1 862 2 055 718
农田 433 1 412 1 354 954 1 641 604 178 2 022 999
耕地/自然植被镶嵌 77 242 192 105 296 110 29 350 132
裸地/低植被覆盖 477 416 92 515 272 198 535 421 29
Tab.2  土地覆盖类型与ERA,ASCAT和AMSR-E土壤湿度误差σ
[1] Scipal K, Dorigo W,de Jeu R.Triple collocation:A new tool to determine the error structure of global soil moisture products [C]// Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium.Honolulu:IEEE, 2010: 4426-4429.
[2] Naeimi V, Scipal K, Bartalis Z , et al. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(7):1999-2013.
doi: 10.1109/TGRS.2008.2011617
[3] Parinussa R M , Meesters A G C A,Liu Y Y,et al.Error estimates for near-real-time satellite soil moisture as derived from the land parameter retrieval model[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(4):779-783.
doi: 10.1109/LGRS.2011.2114872
[4] Stoffelen A . Toward the true near-surface wind speed:Error modeling and calibration using triple collocation[J]. Journal of Geophysical Research, 1998,103(C4):7755-7766.
doi: 10.1029/97JC03180
[5] Scipal K, Holmes T,de Jeu R,et al.A possible solution for the problem of estimating the error structure of global soil moisture data sets[J]. Geophysical Research Letters, 2008,35(24):101-106.
[6] Leroux D J, Kerr Y H, Richaume P, et al. Estimating SMOS error structure using triple collocation [C]// Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium.Vancouver:IEEE, 2011: 24-27.
[7] Yilmaz M T, Crow T W . Evaluation of assumptions in soil moisture triple collocation analysis[J]. Journal of Hydrometeorology, 2014,15(3):1293-1302.
doi: 10.1175/JHM-D-13-0158.1
[8] Dorigo W A, Scipal K, Parinussa R M , et al. Error characterisation of global active and passive microwave soil moisture data sets[J]. Hydrology and Earth System Sciences Discussions, 2010,14(12):2605-2616.
doi: 10.5194/hess-14-2605-2010
[9] Renzullo L J, van Dijk A I J M, Perraud J M , et al. Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment[J]. Journal of Hydrology, 2014,519:2747-2762.
doi: 10.1016/j.jhydrol.2014.08.008
[10] Gruber A, Su C H, Zwieback S , et al. Recent advances in(soil moisture) triple collocation analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,45:200-211.
doi: 10.1016/j.jag.2015.09.002
[11] Yilmaz M T, Crow W T . The optimality of potential rescaling approaches in land data assimilation[J]. Journal of Hydrometeorology, 2013,14(2):650-660.
doi: 10.1175/JHM-D-12-052.1
[12] Brocca L, Melone F, Moramarco T , et al. Chapter 17: Scaling and Filtering Approaches for the use of Satellite Soil Moisture Observations[M] // Remote Sensing of Energy Fluxes and Soil Moisture Content. England & Wales:CRC Press Taylor & Francis Group, 2013: 415-427.
[13] Naeimi V, Bartalis Z, Wagner W . ASCAT soil moisture:An assessment of the data quality and consistency with the ERS scatterometer heritage[J]. Journal of Hydrometeorology, 2009,10(2):555-563.
doi: 10.1175/2008JHM1051.1
[14] Wagner W, Hahn S, Kidd R , et al. The ASCAT soil moisture product:A review of its specifications,validation results, and emerging applications[J]. Meteorologische Zeitschrift, 2013,22(1):5-33.
doi: 10.1127/0941-2948/2013/0399
[15] Owe M, de Jeu R, Holmes T . Multisensor historical climatology of satellite-derived global land surface moisture[J]. Journal of Geophysical Research, 2008,113(F1):196-199.
doi: 10.1029/2007JF000769
[16] Berrisford P, Dee D, Poli P , et al. The ERA-interim archive:Version 2.0[J]. Nihon Seirigaku Zasshi Journal of the Physiological Society of Japan, 1969,31(10).
[17] Brocca L, Hasenauer S, Lacava T , et al. Soil moisture estimation through ASCAT and AMSR-E sensors:An intercomparison and validation study across Europe[J]. Remote Sensing of Environment, 2011,115(12):3390-3408.
doi: 10.1016/j.rse.2011.08.003
[18] Albergel C, Rüdiger C, Pellarin T , et al. From near-surface to root-zone soil moisture using an exponential filter:An assessment of the method based on in-situ observations and model simulations[J]. Hydrology and Earth System Sciences, 2008,12(6):1323-1337.
doi: 10.5194/hess-12-1323-2008
[19] Friedl M A, Sulla-menashe D,Tan B,et al.MODIS collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010,114(1):168-182.
doi: 10.1016/j.rse.2009.08.016
[1] 袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
[2] 王佳新, 萨楚拉, 毛克彪, 孟凡浩, 罗敏, 王牧兰. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1): 231-239.
[3] 赵菲菲, 包妮沙, 吴立新, 孙瑞. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.
[4] 李伟, 陈秀万, 彭学峰, 肖汉. GNSS-R土壤湿度估算体系架构研究与初步实现[J]. 国土资源遥感, 2017, 29(1): 213-220.
[5] 陈梦杰, 吴虹, 刘超, 周旻玥, 陆丁滒, 郭威. 基于生态参数的岩溶峰丛区石灰岩基岩表面溶蚀率遥感反演[J]. 国土资源遥感, 2015, 27(3): 71-76.
[6] 李爽, 宋小宁, 王亚维, 王睿馨. 基于AMSR-E数据的中国地区微波湿度指数研究[J]. 国土资源遥感, 2015, 27(1): 68-74.
[7] 鲍艳松, 毛飞, 闵锦忠, 王冬梅, 严婧. 基于FY-3B/MWRI数据的裸土区土壤湿度反演[J]. 国土资源遥感, 2014, 26(4): 131-137.
[8] 张志新, 邓孺孺, 李灏, 陈蕾, 陈启东, 何颖清.  ̄基于混合像元分解的南方地区植被覆盖度遥感监测——以广州市为例[J]. 国土资源遥感, 2011, 23(3): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发