Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 41-45    DOI: 10.6046/gtzyyg.2020.04.06
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
融合超像元与峰值密度特征的遥感影像分类
孙珂()
河南测绘职业学院,郑州 451464
Remote sensing image classification based on super pixel and peak density
SUN Ke()
Henan College of Surveying and Mapping, Zhengzhou 451464, China
全文: PDF(1929 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

目前的高光谱影像分类算法多仅考虑光谱信息,为发挥高光谱影像空间信息和峰值密度聚类算法在划分遥感影像地物的优势,提出融合超像元与峰值密度特征的影像分类方法。充分利用超像元分割技术在高光谱影像空间信息和光谱信息,将高光谱影像分为超像元; 之后提取超像元灰度值作为峰值密度分类的重要特征; 然后筛选峰值密度最高的光谱作为整幅影像的光谱簇,视像元和超像元作为分类的基本单位; 进而分别获取像元、超像元与光谱簇间的差异,得到隶属度关系; 最后结合隶属度完成影像分类。通过实验验证,该方法在确保分类精度最高的条件下,较其他方法耗时相对较少,满足高光谱影像信息提取和分析的要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙珂
关键词 高光谱遥感影像峰值密度超像元特征融合影像分类    
Abstract

In order to give full play to the advantages of hyperspectral spatial information and peak density clustering algorithm in dividing remote sensing image features, this paper proposes a hyperspectral image classification method based on the combination of hyperpixel and peak density features. Superpixel segmentation technology makes full use of the spatial and spectral information of hyperspectral images, dividing hyperspectral images into hyperpixels, extracting the gray value of hyperpixels as an important feature of peak density classification, selecting the spectrum with the highest peak density as the spectral cluster of the whole image, using the visual and hyperpixels as the basic units of classification, and then obtaining the pixels and hyperpixels respectively. The membership relation is obtained by the difference between spectral clusters. Finally, the image classification is completed by combining the membership degree. Experiments show that the proposed algorithm takes less time than other methods under the condition of ensuring the highest classification accuracy, and meets the requirements of hyperspectral image information extraction and analysis.

Key wordshyperspectral image    peak density    superpixel pixel    feature fusion    image classification
收稿日期: 2019-12-12      出版日期: 2020-12-23
:  TP751  
作者简介: 孙 珂(1985-),男,讲师,主要从事摄影测量与遥感、GIS方面的研究。Email:sunke_85@163.com
引用本文:   
孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
SUN Ke. Remote sensing image classification based on super pixel and peak density. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.06      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/41
Fig.1  SLIC-DP算法操作步骤
Fig.2  高光谱影像Pavia University数据集
Fig.3  Pavia University数据集分类结果
算法 ARI 时间/s
K-Means 0.360 2.024
SLIC-KMeans 0.376 20.290
SLIC-DP-P 0.456 19.703
SLIC-DP-SP 0.468 16.867
Tab.1  算法分类精度和计算时间
[1] 崔宾阁, 吴亚男, 钟勇. 高光谱图像滚动引导递归滤波与地物分类[J]. 遥感学报, 2019,23(3):431-442.
Cui B G, Wu Y N, Zhong Y. Rolling guided recursive filtering and feature classification of hyperspectral images[J]. Journal of Remote Sensing, 2019,23(3):431-442.
[2] 龚希, 吴亮, 谢忠, 等. 融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J]. 光学学报, 2019,39(3):19-29.
Gong X, Wu L, Xie Z, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 2019,39(3):19-29.
[3] 谷雨, 徐英, 郭宝峰. 融合空谱特征和集成超限学习机的高光谱图像分类[J]. 测绘学报, 2018,47(9):1238-1249.
Gu Y, Xu Y, Guo B F. Hyperspectral image classification by combination of spatial-spectral features and ensemble extreme learning matchines[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(9):1238-1249.
[4] 陈洋, 范荣双, 徐启恒, 等. 结合光谱相似和相位一致的高分辨率影像分类[J]. 测绘科学, 2018,43(11):142-146.
Chen Y, Fan R S, Xu Q H, et al. A high resolution image classification method considering spectral similarity and phase consistency[J]. Science of Surveying and Mapping, 2018,43(11):142-146.
[5] Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014,344(6191):1492-1496.
doi: 10.1126/science.1242072 pmid: 24970081
[6] 许毅平. 基于高光谱图像多特征分析的目标提取研究[D]. 武汉:华中科技大学, 2008.
Xu Y P. Study on object extraction based on multi-feature from hyperspectral image[D]. Wuhan:Huazhong University of Science and Technology, 2008.
[7] 唐贵华. 基于密度排序聚类和超像素分割的高光谱遥感影像降维方法研究[D]. 深圳:深圳大学, 2016.
Tang G H. Ranking-based-clustering and superpixel segmentation for hyperspectral remote imagery dimensionality reduction[D]. Shenzhen:Shenzhen University, 2016.
[8] Sun X, Yang L, Gao L, et al. Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields[J]. Journal of Applied Remote Sensing, 2015,9(1):095047.
[9] Ren X, Malik J. Learning a classification model for segmentation[C]// Proceedings of Ninth IEEE International Conference on Computer Vision, 2003.
[10] 方旭, 王光辉, 杨化超, 等. 结合均值漂移分割与聚类分析的遥感影像变化检测[J]. 测绘通报, 2017(12):68-71.
Fang X, Wang G H, Yang H C, et al. Remote sensing imageries change detection combined with mean-shift segmentation and cluster analysis[J]. Bulletin of Surveying and Mapping, 2017(12):68-71.
[11] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706
[12] Ren C Y, Reid I. gSLIC:A real-time implementation of SLIC superpixel segmentation[R]. Oxford:University of Oxford,Department of Engineering, 2011.
[13] Kim K S, Zhang D, Kang M C, et al. Improved simple linear iterative clustering superpixels[C]// IEEE International Symposium on Consumer Electronics. IEEE, 2013.
[14] Saranathan A M, Parente M. Uniformity-based superpixel segmentation of hyperspectral images[C]// IEEE Transactions on Geoscience and Remote Sensing. IEEE, 2016,54(3):1419-1430.
[1] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[2] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[3] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[4] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[5] 李亮, 周亚光, 梁彬, 徐庆. 融合时间特征的遥感影像分类[J]. 国土资源遥感, 2017, 29(1): 36-42.
[6] 李亮, 梁彬, 薛鹏, 应国伟. 基于像斑直方图G统计量的遥感影像分类[J]. 国土资源遥感, 2016, 28(4): 71-76.
[7] 李亮, 应国伟, 文学虎, 何鑫. 融合时间特征的高分辨率遥感影像分类[J]. 国土资源遥感, 2016, 28(2): 91-98.
[8] 张焕雪, 李强子, 文宁, 杜鑫, 陶青山, 田亦陈. 农作物种植面积遥感估算的影响因素研究[J]. 国土资源遥感, 2015, 27(4): 54-61.
[9] 彭正林, 毛先成, 刘文毅, 何美香. 基于多分类器组合的遥感影像分类方法研究[J]. 国土资源遥感, 2011, 23(2): 19-25.
[10] 沈照庆, 陶建斌. 基于模糊核主成分分析的高光谱遥感影像特征提取研究[J]. 国土资源遥感, 2009, 21(3): 41-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发