Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 33-40    DOI: 10.6046/gtzyyg.2020.04.05
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于粒子群优化和像元分解模型的遥感影像时空融合
张红利1(), 罗蔚然2(), 李艳1,2
1.郑州工业安全职业学院,郑州 450000
2.郑州大学水利科学与工程学院,郑州 450000
Spatiotemporal fusion of remote sensing images based on particle swarm optimization and pixel decomposition
ZHANG Hongli1(), LUO Weiran2(), LI Yan1,2
1. Zhengzhou Vocational College of Industrial Safety, Zhengzhou 450000, China
2. School of Water Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
全文: PDF(5093 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

时空融合影像能够满足大范围、高精度、快速变化的地表覆被监测需求,已被广泛应用于环境、水文及农情监测等多个领域。基于不同类型的遥感数据,提出一种基于粒子群优化(particle swarm optimization,PSO)和线性混合像元分解技术的遥感影像融合方法。首先,通过统计不同端元反射率变化范围将PSO方法应用于端元反射率求解过程中; 然后,综合考虑高低空间分辨率影像之间的端元反射率差异及时空权重实现遥感影像融合; 最后,与现有方法进行对比验证。结果表明,所提方法能够有效提高遥感影像的融合精度。以近红外、红光和绿光波段遥感影像为例,使用该方法得到的预测影像的均方根误差和空间结构相似指数均优于增强型的时空融合模型(enhanced spatial and temporal data fusion model,ESTDFM)方法,因此,该方法对地表覆被变化监测与研究具有实用意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张红利
罗蔚然
李艳
关键词 时空融合混合像元分解粒子群优化滑动窗口    
Abstract

Spatiotemporal fusion image can meet the needs of large-scale, high-precision and rapid change of surface cover monitoring, and hence has been widely used in environmental, hydrological and agricultural monitoring and other fields. In this paper, based on different types of remote sensing data, the authors propose a method of remote sensing image fusion based on particle swarm optimization (PSO) and linear mixed pixel decomposition. First of all, the PSO method is applied to the calculation of the end-point reflectance through the statistics of the different range of the end-point reflectance, and then the remote sensing image fusion is realized by considering the difference of the end-point reflectance between the high and low spatial resolution images and the space-time weight. Finally, the comparison with the existing methods shows that the proposed method can effectively improve the accuracy of the prediction image produced by data fusion. The root mean square error and spatial structure similarity index predicted in this paper are better than the results of the enhanced spatial and temporal data fusion model(ESTDFM). Therefore, the proposed method would be of great value for the study of land cover change monitoring.

Key wordsspatiotemporal fusion    mixed pixel decomposition    particle swarm optimization    moving window
收稿日期: 2020-02-17      出版日期: 2020-12-23
:  TP751  
  P237  
基金资助:河南省高等学校青年骨干教师培养计划项目“基于Sentinel遥感数据的麦田土壤墒情反演”(2019GZGG073)
通讯作者: 罗蔚然
作者简介: 张红利(1982-),女,讲师,主要研究方向为工程测量研究。Email:2383499173@qq.com
引用本文:   
张红利, 罗蔚然, 李艳. 基于粒子群优化和像元分解模型的遥感影像时空融合[J]. 国土资源遥感, 2020, 32(4): 33-40.
ZHANG Hongli, LUO Weiran, LI Yan. Spatiotemporal fusion of remote sensing images based on particle swarm optimization and pixel decomposition. Remote Sensing for Land & Resources, 2020, 32(4): 33-40.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.05      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/33
Fig.1  技术流程
Fig.2  研究区近红外、红光、绿光波段标准假彩色影像
Fig.3  ERGAShERGASl变化
Fig.4  近红外、红光、绿光合成标准假彩色融合结果
Fig.5  近红外、红光、绿光波段预测值与观测值的二维散点图
波段 ESTDFM 本文方法
RMSE R2 AD SSIM RMSE R2 AD SSIM
绿光 0.018 0.87 0.002 6 0.84 0.017 0.89 0.000 72 0.86
红光 0.026 0.87 -0.014 0 0.84 0.025 0.89 -0.006 20 0.85
近红外 0.051 0.84 0.039 0 0.83 0.035 0.86 0.002 90 0.85
Tab.1  2种方法的精度评估
[1] 邬明权, 王洁, 牛铮, 等. 融合MODIS与Landsat数据生成高时间分辨率Landsat数据[J]. 红外与毫米波学报, 2012,31(1):80-84.
Wu M Q, Wang J, Niu Z, et al. A model for spatial and temporal data fusion[J]. Journal of Infrared and Millimeter Waves, 2012,31(1):80-84.
[2] 杨军明, 吴昱, 魏永霞, 等. 多源数据融合的高时空分辨率植被指数生成[J]. 遥感学报, 2019,23(5):935-943.
Yang J M, Wu Y, Wei Y X, et al. A model for the fusion of multi-source data to generate high temporal and spatial resolution VI data[J]. Journal of Remote Sensing, 2019,23(5):935-943.
[3] Gevaert, C M, Garcia-Haro, F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015,156(1):34-44.
[4] 董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018,30(2):1-11.doi: 10.6046/gtzyyg,2018.02.01.
Dong W Q, Meng J H. Review of spatiotemporal fusion model of remote sensing data[J]. Remote Sensing for Land and Resources, 2018,30(2):1-11.doi: 10.6046/gtzyyg,2018.02.01.
[5] 杨敏, 杨贵军, 陈晓宁, 等. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018,30(1):54-62.doi: 10.6046/gtzyyg.2018.01.08.
Yang M, Yang G J, Chen X N, et al. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land and Resources, 2018,30(1):54-62.doi: 10.6046/gtzyyg.2018.01.08.
[6] Meng J H, Wu B F, Du X, et al. Method to construct high spatial and temporal resolution NDVI dataset-STAVFM[J]. Journal of Remote Sensing, 2011,15(1):44-59.
doi: 10.11834/jrs.20110104
[7] Alysha D P. MODIS-based change detection for Grizzly Bear habitat mapping in Alberta[J]. Photogrammetric Engineering and Remote Sensing, 2008,74(8):973-985.
doi: 10.14358/PERS.74.8.973
[8] Ju J, Roy D P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally[J]. Remote Sensing of Environment, 2008,112(3):1196-1211.
[9] 黄波, 赵涌泉. 多源卫星遥感影像时空融合研究的现状及展望[J]. 测绘学报, 2017(10):294-301.
Huang B, Zhao Y Q. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017(10):294-301.
[10] 魏然, 单杰. 城市地表温度影像时空融合方法研究[J]. 武汉大学学报(信息科学版), 2018,43(3):428-435.
Wei R, Shan J. Spatial and temporal fusion for urban land surface temperature image mapping[J]. Geomatics and Information Science of Wuhan University, 2018,43(3):428-435.
[11] Marfai M A, Almohammad H, Dey S. Coastal dynamic and shoreline mapping:Multi-sources spatial data analysis in Semarang Indonesia[J]. Environmental Monitoring and Assessment, 2008,142(1):297-308.
[12] Arai E, Shimabukuro Y E, Pereira G. A multi-resoluticm multi-temporal technique for detecting and mapping deforestation in the Brazilian Amazon rainforest[J]. Remote Sensing, 2011,3(9):1943-1956.
[13] Huang B, Zhang H. Spatio-temporal reflectance fusion via unmixing:Accounting for both phenological and land-cover changes[J]. International Journal of Remote Sensing, 2014,35(16):6213-6233.
[14] Song H, Huang B. Spatiotemporal satellite image fusion through one-pair image learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(4):1883-1896.
[15] Gao F, Masek J, Schwaller M. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(8):2207-2218.
doi: 10.1109/TGRS.2006.872081
[16] Hilker T, Wulder M A, Coops N C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009,113(8):1613-1627.
doi: 10.1016/j.rse.2009.03.007
[17] Zhu X L, Chen J, Gao F. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010,114(11):2610-2623.
doi: 10.1016/j.rse.2010.05.032
[18] Zurita-Milla R, Clevers J, Schaepman M E. Unmixing-based Landsat TM and MERIS FR data fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2008,5(3):453-457.
[19] Maselli F. Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses[J]. Remote Sensing of Environment, 2001,75(1):29-38.
[20] Busetto L, Meroni M, Colombo R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment, 2008,112(1):118-131.
[21] Zhang W, Li A N, Jin H A. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data[J]. Remote Sensing, 2013,5(10):5346-5368.
doi: 10.3390/rs5105346
[22] 张兵, 孙旭, 高连如, 等. 一种基于离散粒子群优化算法方法的高光谱图像端元提取方法[J]. 光谱学与光谱分析, 2011,31(9):2455-2461.
Zhang B, Sun X, Gao L R, et al. A method of endmember extraction in hyperspectral remote sensing images based on discrete particle swarm optimization[J]. Spectroscopy and Spectral Analysis, 2011,31(9):2455-2461.
doi: 10.3964/j.issn.1000-0593(2011)09-2455-07
[23] Hadhoud M M, Dessouky M I, El-Samie F E A, et al. Adaptive image interpolation based on local activity levels[C]// Proceedings of the Twentieth National Radio Science Conference. IEEE, 2003:C4-1.
[24] Wald L. Data fusion,definitions and architectures:Fusion of images of different spatial resolutions[M]. Pressesdes MINES, 2002.
[25] Zhu X L, Helmer E H, Gao F. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016,172(1):165-177.
[1] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[2] 秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼. 定量遥感若干前沿方向探讨[J]. 国土资源遥感, 2020, 32(4): 8-15.
[3] 石晨烈, 王旭红, 张萌, 刘状, 祝新明. 3种时空融合算法在洪水监测中的适用性研究[J]. 国土资源遥感, 2020, 32(2): 111-119.
[4] 朱爽, 张锦水. 时间序列低分影像修正中分遥感冬小麦分布[J]. 国土资源遥感, 2020, 32(1): 19-26.
[5] 董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018, 30(2): 1-11.
[6] 杨敏, 杨贵军, 陈晓宁, 张勇峰, 尤静妮. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018, 30(1): 54-62.
[7] 林娜, 杨武年, 王斌. 基于核方法的高光谱遥感图像混合像元分解[J]. 国土资源遥感, 2017, 29(1): 14-20.
[8] 金鑫, 柯长青. 基于混合像元分解的天山典型地区冰雪变化监测[J]. 国土资源遥感, 2012, 24(4): 146-151.
[9] 张志新, 邓孺孺, 李灏, 陈蕾, 陈启东, 何颖清.  ̄基于混合像元分解的南方地区植被覆盖度遥感监测——以广州市为例[J]. 国土资源遥感, 2011, 23(3): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发