Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (1): 240-248    DOI: 10.6046/gtzyyg.2020087
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
秦岭山地对气溶胶的生态屏障效应
孟清1,2(), 白红英1,2(), 赵婷1,2, 郭少壮1,2, 齐贵增1,2
1.西北大学城市与环境学院,西安 710127
2.西北大学陕西省地表系统与环境承载力重点实验室,西安 710127
The eco-barrier effect of Qinling Mountain on aerosols
MENG Qing1,2(), BAI Hongying1,2(), ZHAO Ting1,2, GUO Shaozhuang1,2, QI Guizeng1,2
1. College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
2. Key Laboratory of Surface System and Environmental carrying Capacity of Shaanxi Province, Northwest University, Xi’an 710127, China
全文: PDF(4709 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于2002年1月至2017年12月间的Terra/MODIS MOD04_3k气溶胶光学厚度(aerosol optical depth,AOD)产品,通过空间分析法和核密度估计法分析了秦岭山地对AOD的生态屏障作用及气溶胶与地形的关系。结果表明: ①秦岭山地对大气气溶胶的生态屏障作用明显。16 a来秦岭北麓年均AOD值均高于秦岭南麓,高值中心均出现在秦岭北麓的关中城市群。在秦岭山地生态屏障作用下,秦岭山地南、北麓AOD差异明显,不论从极值、均值和南北坡相同海拔的AOD值来看,均表现出“南北分异”的特点,进一步说明了秦岭山地对AOD明显的阻隔作用。②秦岭山地对AOD表现出明显的海拔分层效应: AOD分布随海拔上升呈现对数下降趋势,在海拔2 000 m(突变点)以下,AOD呈显著的加速下降趋势,速率为0.001/1 000 m; 在海拔2 000 m以上,AOD呈显著的匀速下降趋势,速率接近为0。③AOD在秦岭山地不同地形下分布差异较大。平原区的集聚中心分布在海拔330~420 m处,集聚中心约79%的值集聚在0.35~0.71之间,并且在330~340 m之间出现了高值集聚中心(AOD=0.7); 低山区的集聚中心分布在海拔900~1 000 m处,约79%的值集聚在0.15~0.32之间; 中山区的集聚中心分布在海拔1 000~1 400 m处,约60%的值集聚在0.19~0.3之间,此3种地形下,AOD均呈雾状分布; 高山区AOD呈零星点状分布,无集聚中心。④在秦岭北坡,AOD集聚中心海拔分布为500 m,南坡集聚中心海拔约为1 100~1 200 m,北坡AOD集聚中心值(AOD=0.6)高于南坡(AOD=0.22)。AOD随着秦岭北坡海拔升高而呈对数下降趋势,南坡下降趋势不明显。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟清
白红英
赵婷
郭少壮
齐贵增
关键词 气溶胶光学厚度秦岭山地阻隔作用地形分类生态屏障作用    
Abstract

The ecological barrier effect of Qinling Mountain on aerosol optical depth (AOD) and the relationship between aerosol and terrain were studied by spatial analysis and Kernel Density Estimation using AOD retrievals obtained from the Terra-MODIS Collection 6.1 Level-2 aerosol product at 3 km spatial resolution from January 2002 to December 2017. The results showed an obvious effect of the ecological barrier effect of the Qinling Mountain on atmospheric aerosol. An annual average AOD value at the northern foot of the Qinling Mountain was higher than that at the southern foot of the Qinling Mountain in the past 16 years. High-values of AOD were in Guanzhong urban agglomeration at the northern foot of Qinling Mountain. By comparing and analyzing the changes of AOD along different longitudes of Qinling Mountain, obvious differences were observed in AOD between the south and the north of Qinling Mountain in terms of extreme, mean and special values, which showed the characteristics of “north-south differentiation” and further illustrates the obvious barrier effect of Qinling Mountain on AOD. AOD over the Qinling Mountain showed a significant elevation stratification effect, i.e., a logarithmic downward trend with the increase of elevation. Under the elevation of 2 000 m(mutation point), AOD showed a significant accelerated downward trend with a rate of 0.001/1 000 m. Over the elevation of 2 000 m, AOD showed a significant uniform downward trend with a rate close to zero. The results also showed that the distribution of AOD varied greatly in different terrain of the Qinling Mountain. The AOD agglomeration centers in the plain areas were located at 330~420 m above mean sea level (a.s.l.) , where 79% of AOD were concentrated between 0.35 and 0.71, and high-value AOD (AOD =0.7) agglomeration centers were located between 330 and 340 m. The AOD agglomeration centers in the low-mountains areas were located at 900~1 000 m a.s.l., and 79% of AOD were concentrated between 0.15 and 0.32. The AOD agglomeration centers in middle-mountains areas were located at 1 000~1 400 m a.s.l., and about 60% of AOD were concentrated between 0.19 and 0.3. AOD presented a foggy distribution under plain, low-mountain and middle-mountain areas. AOD in high-mountain areas presented a sporadic point distribution without concentration centers. On the northern slope of Qinling Mountain, the elevation distribution of AOD concentration center was 500 m, while that of the southern slope was about 1 100~1 200 m. The AOD concentration center value (AOD=0.6) on the northern slope was higher than that on the southern slope (AOD=0.22). The AOD decreased logarithmically with the elevation of the northern slope of Qinling Mountain, but the decreasing trend of the southern slope was not obvious.

Key wordsaerosol optical depth    Qinling Mountain    barrier function    terrain classification    ecological barrier function
收稿日期: 2020-04-01      出版日期: 2021-03-18
ZTFLH:  X87  
基金资助:国家林业公益性行业科研专项“秦岭天然林对气候变化的时空响应及管理对策”资助(201304309)
通讯作者: 白红英
作者简介: 孟 清(1993-),女,博士研究生,主要从事秦岭地区气候变化和大气研究。Email: qingmengmq@163.com
引用本文:   
孟清, 白红英, 赵婷, 郭少壮, 齐贵增. 秦岭山地对气溶胶的生态屏障效应[J]. 国土资源遥感, 2021, 33(1): 240-248.
MENG Qing, BAI Hongying, ZHAO Ting, GUO Shaozhuang, QI Guizeng. The eco-barrier effect of Qinling Mountain on aerosols. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020087      或      https://www.gtzyyg.com/CN/Y2021/V33/I1/240
Fig.1  秦岭的地理位置
Fig.2  秦岭南、北麓2002—2017年AOD年际分布
年份 北麓
AOD值
南麓
AOD值
年份 北麓
AOD值
南麓
AOD值
2002年 0.35 0.26 2010年 0.39 0.26
2003年 0.31 0.23 2011年 0.40 0.28
2004年 0.32 0.23 2012年 0.35 0.25
2005年 0.35 0.23 2013年 0.37 0.29
2006年 0.41 0.29 2014年 0.32 0.23
2007年 0.42 0.30 2015年 0.35 0.23
2008年 0.35 0.25 2016年 0.31 0.21
2009年 0.36 0.27 2017年 0.27 0.19
Tab.1  秦岭南、北麓2002—2017年年均AOD对比
Fig.3  秦岭山地16年年均AOD沿不同经度剖面图
经度/
°E
海拔/
m
北坡
AOD值
南坡
AOD值
经度/
°E
海拔/
m
北坡
AOD值
南坡
AOD值
107 834 0.30 0.20 1 170 0.17 0.20
978 0.27 0.23 1 489 0.15 0.20
1 079 0.24 0.20 1 794 0.17 0.18
1 266 0.21 0.25 109 524 0.58 0.25
1 565 0.19 0.19 626 0.50 0.25
108 446 0.58 0.18 1 059 0.38 0.29
545 0.53 0.39 1 653 0.20 0.18
639 0.48 0.24 110 687 0.52 0.28
727 0.41 0.36 1 098 0.36 0.26
1 038 0.30 0.24
Tab.2  秦岭山地南北坡相同海拔沿不同经度的AOD值对比
Fig.4  16 a间秦岭山地AOD随海拔的变化规律
Fig.5  秦岭地区地形分类图
Fig.6  秦岭地区4种地形下AOD的分布
Fig.6-2  秦岭地区4种地形下AOD的分布
Fig.7  秦岭山地南北坡AOD分布
[1] 潘韬, 吴绍洪, 何大明, 等. 纵向岭谷区地表格局的生态效应及其区域分异[J]. 地理学报, 2012,67(1):13-26.
Pan T, Wu S H, He D M, et al. Ecological effects and regional differentiation of land surface pattern in longitudinal range-valley region[J]. Journal of Geography, 2012,67(1):13-26.
[2] 吴绍洪, 潘韬, 曹杰, 等. 西南纵向岭谷地形对季风的“通道—阻隔”作用[J]. 地理研究, 2012,31(1):1-13.
Wu S H, Pan T, Cao J, et al. The “channel-blocking” effect of southwestern longitudinal ridge and valley topography on monsoon[J]. Geographic Research, 2012,31(1):1-13.
[3] 何云玲, 张一平. 纵向岭谷区“通道-阻隔”作用下气温和降雨的空间分布特征[J]. 山地学报, 2007(2):169-176.
He Y L, Zhang Y P. Spatial distribution characteristics of air temperature and rainfall under “channel-blocking” effect in longitudinal ridge-valley region[J]. Journal of Mountain Science, 2007(2):169-176.
[4] 何奕萱, 易桂花, 张廷斌, 等. 红河流域“通道-阻隔”作用下2000—2014年植被EVI变化趋势与驱动力[J]. 生态学报, 2018,38(6):2056-2064.
He Y X, Yi G H, Zhang T B, et al. Changes and driving forces of vegetation EVI in Honghe River basin from 2000 to 2014 under “passage-barrier” effect[J]. Acta Ecologica Sinica, 2018,38(6):2056-2064.
[5] 郝成元, 戴尔阜, 吴绍洪, 等. 纵向岭谷区南部“阻隔”作用及植被时空异质性研究[J]. 科学通报, 2006(s2):120-128.
Hao C Y, Dai E F, Wu S D, et al. Study on “blocking” effect and spatial and temporal heterogeneity of vegetation in southern longitudinal range and valley area[J]. Science Bulletin, 2006(s2):120-128.
[6] Pan T, Wu S H, Dai E F, et al. Indicative significance of sporopollen spatial assemblages in longitudinal ridge and valley area of southwest China to barrier effect[J]. Journal of Geographical Sciences, 2009,19(6):660-670.
[7] 李阳兵, 张阳阳. 平行岭谷区建设用地格局演变扩展的通道与低山阻隔效应[J]. 地理研究, 2010,29(03):440-448.
Li Y B, Zhang Y Y. Channels for evolution and expansion of construction land pattern in parallel ridge and valley area and barrier effect in low mountains[J]. Geographic Research, 2010,29(3):440-448.
[8] 高登义. 山地屏障与水汽通道综合作用初探——兼谈大香格里拉自然成因[J]. 高原气象, 2007(6):1305-1310.
Gao D Y. Preliminary study on the comprehensive effect of mountain barrier and water vapor channel-also on the natural causes of Shangri-La[J]. Plateau Meteorology, 2007(6):1305-1310.
[9] 孟小绒. 秦岭山脉的强阻挡作用造成降雪结束预报失误[A].中国科学技术协会.节能环保和谐发展——2007中国科协年会论文集(二)[C]. 中国科学技术协会:中国科学技术协会学会学术部, 2007: 4.
Meng X R. The strong blocking effect of Qinling Mountains caused the failure of snow end forecast[A].China Association of Science and Technology.Harmonious Development of Energy Conservation and Environmental Protection-Proceedings of 2007 China Association of Science and Technology Annual Meeting (2)[C]. China Association of Science and Technology:Academic Department of China Association of Science and Technology, 2007: 4.
[10] 陈志超, 郝成元, 刘昌华, 等. 伏牛山阻隔作用下水热因子、土地覆被与NPP的时空特征[J]. 生态环境学报, 2013,22(5):761-766.
Chen Z C, Hao C Y, Liu C H, et al. Spatiotemporal characteristics of hydrothermal factors,land cover and NPP under blocking effect of Funiu Mountain[J]. Journal of Ecological Environment, 2013,22(5):761-766.
[11] 吴绍洪, 戴尔阜, 何大明. 我国西南纵向岭谷区环境与发展问题初步研究[J]. 地理科学进展, 2005(1):31-40.
Wu S H, Dai E F, He D M. Preliminary study on environment and development in longitudinal range and valley area of southwest China[J]. Progress in Geographical Science, 2005(1):31-40.
[12] 何大明, 吴绍洪, 彭华, 等. 纵向岭谷区生态系统变化及西南跨境生态安全研究[J]. 地球科学进展, 2005(3):338-344.
He D M, Wu S H, Peng H, et al. Study on ecosystem changes in longitudinal range-valley area and southwest cross-border ecological security[J]. Progress in Geoscience, 2005(3):338-344.
[13] 姜世中. 气象学与气候学[M]. 北京: 科学出版社, 2010: 15.
Jiang S Z. Meteorology and Climatology[M]. Beijing: Science Press, 2010: 15.
[14] Ofipcc W G I. Climate change 2013:The physical science basis[J]. Contribution of Working, 2013,43(22):866-871.
[15] Kaiser D P, Qian Y. Decreasing trends in sunshine duration over China for 1954-1998:Indication of increased haze pollution[J]. Geophysical Research Letters, 2002,29(21):38-1-38-4.
[16] Crutzen P J. The background of an ozone researcher:A brief autobiography[M]// Paul J.Crutzen:A pioneer on atmospheric chemistry and climate change in the Anthropocene.Springer International Publishing 2016.
[17] Liao H, Adams P J, Chung S H, et al. Interactions between tropospheric chemistry and aerosols in a unified general circulation model[J] Journal of Geophysical Research Atmospheres, 2003, 108(D1):AAC-1-AAC1-23.
pmid: 11542933
[18] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[M]// Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change.DLR, 2007: 129-234.
[19] Rosenfiled D, Lohmann U, Raga G B, et al. Flood or drought:How do aerosols affect precipitation[J]. Science, 2008,321(5894):1309-1313.
doi: 10.1126/science.1160606 pmid: 18772428
[20] Li Z Q, Niu F, Fan J W, et al. Long-term impacts of aerosols on vertical development of cloud and precipitation[J]. Nature Geoscience, 2011,4:888-894.
[21] Tao W K, Chen J P, Li Z Q, et al. Impact of aerosols on convective clouds and precipitation[J]. Reviews of Geophysics, 2012,50(2):1-97.
[22] 汪安璞. 大气气溶胶研究新动向[J]. 环境化学, 1999(1):10-15.
Wang A P. New Trends in atmospheric aerosol research[J]. Environmental Chemistry, 1999(1):10-15.
[23] Baumer D, Vogel B, Versick S, et al. Relationship of visibility,aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany[J]. Atmospheric Environment, 2008,42(5):989-998.
[24] Koren I, Martins J V. Measurement of the effect of amazon smoke on inhibition of cloud formation[J]. Science, 2004,303(5662):1342-1345.
pmid: 14988557
[25] Ramachandan S. Aerosol optical depth and fine mode fraction variations deduced from Moderate Resolution Imaging Spectroradiometer (MODIS) over four urban areas in India[J]. Journal of Geophysical Research Atmospheres, 2007,112(D16).
[26] Meng F, Cao C, Shao X. Spatio-temporal variability of Suomi-NPP VIIRS-derived aerosol optical depth over China in 2013[J]. Remote Sensing of Environment, 2015,163:61-69.
[27] He L, Wang L, Lin A, et al. What drives changes in aerosol properties over the Yangtze River Basin in past four decades?[J]. Atmospheric Environment, 2018,190.
[28] 刘状, 孙曦亮, 刘丹, 等. 2001—2017年中国北方省份气溶胶光学厚度的时空特征[J]. 环境科学学报, 2018,38(8):3177-3184.
Liu Z, Sun X L, Liu D, et al. Temporal and spatial characteristics of aerosol optical thickness in northern provinces of China from 2001 to 2017[J]. Journal of Environmental Science, 2018,38(8):3177-3184.
[29] 吴国雄, 李占清, 符淙斌, 等. 气溶胶与东亚季风相互影响的研究进展[J]. 中国科学:地球科学, 2015,45(11):1609-1627.
Wu G X, Li Z Q, Fu S B, et al. Research progress on interaction between aerosol and east asian monsoon[J]. Chinese Science:Geoscience, 2015,45(11):1609-1627.
[30] 张亮林, 潘竟虎, 张大弘. 基于MODIS数据的中国气溶胶光学厚度时空分布特征[J]. 环境科学学报, 2018,38(11):4431-4439.
Zhang L L, Pan J H, Zhang D H. Temporal and spatial distribution characteristics of aerosol optical thickness in China based on MODIS data[J]. Journal of Environmental Science, 2018,38(11):4431-4439.
[31] 俞海洋, 张杰, 李婷, 等. 2000—2013年北京及周边地区大气气溶胶光学厚度时空变化特征及气象影响因素分析[J]. 气象科学, 2018,38(4):512-522.
Yu H Y, Zhang J, Li T, et al. Analysis on temporal and spatial variation characteristics of atmospheric aerosol optical thickness and meteorological influencing factors in Beijing and its surrounding areas from 2000 to 2013[J]. Meteorological Science, 2018,38(4):512-522.
[32] 徐小红, 余兴, 戴进. 气溶胶对秦岭山脉地形云降水的影响[J]. 气象, 2009,35(1):37-47.
Xu X H, Yu X, Dai J. Effect of aerosol on topographic cloud precipitation in Qinling mountains[J]. Meteorology, 2009,35(1):37-47.
[33] 戴进, 余兴, Daniel Rosenfeld, 等. 秦岭地区气溶胶对地形云降水的抑制作用[J]. 大气科学, 2008(6):1319-1332.
Dai J, Yu X, Daniel R, et al. Inhibitory effect of aerosol on topographic cloud precipitation in Qinling area[J]. Atmospheric Science, 2008(6):1319-1332.
[34] 杜川利, 余兴. 气溶胶和城市热岛效应对秦岭地区近50年气温序列影响分析[J]. 高原气象, 2013,32(5):1321-1328.
Du C L, Yu X. Analysis of aerosol and urban heat island effect on temperature series in Qinling area in recent 50 years[J]. Plateau Meteorology, 2013,32(5):1321-1328.
[35] 马新萍. 秦岭林线及其对气候变化的响应[D]. 西安:西北大学, 2015.
Ma X P. Qinling forest line and its response to climate change[D]. Xi'an:Northwest University, 2015.
[36] 王耀斌. 秦 岭(陕西段)生态资产时空变化特征及其驱动因素[D]. 西安:长安大学, 2018.
Wang Y B. Spatial-temporal variation characteristics and driving factors of ecological assets in Qinling Mountains (Shaanxi Section)[D]. Xi’an:Chang’an University, 2018.
[37] 孟清, 白红英, 郭少壮. 基于Anusplin秦岭地区近50多年来的降水时空变化[J]. 水土保持研究, 2020,27(2):206-212.
Meng Q, Bai H Y, Guo S Z. Temporal and spatial changes of precipitation in Qinling Mountains in recent 50 years based on Anusplin[J]. Soil and Water Conservation Research, 2020,27(2):206-212.
[38] 赵婷, 白红英, 邓晨晖, 等. 2000—2016年秦岭山地植被覆盖变化地形分异效应[J]. 生态学报, 2019,39(12):4499-4509.
Zhao T, Bai H Y, Deng C H, et al. Topographic differentiation effect of vegetation cover change in Qinling Mountains from 2000 to 2016[J]. Acta Ecologica Sinica, 2019,39(12):4499-4509.
[39] 周旗, 卞娟娟, 郑景云. 秦岭南北1951-2009年的气温与热量资源变化[J]. 地理学报, 2011,( 9):1211-1218.
Zhou Q, Bian J J, Zheng J Y. Temperature and heat resource changes in north and south Qinling mountains from 1951 to 2009[J]. Journal of Geography, 2011,( 9):1211-1218.
[40] 齐文娟, 杨晓梅. 江西省都昌县山地与平原植被界线提取[J]. 地球信息科学学报, 2017,19(4):559-569.
Qi W J, Yang X M. Extraction of vegetation boundary between mountain and plain in duchang county,Jiangxi Province[J]. Journal of Geoscience, 2017,19(4):559-569.
[41] 白红英. 秦巴山区森林植被对环境变化的响应[M]. 北京: 科学出版社, 2014.
Bai H Y. Responses of forest vegetation to environmental changes in Qinba mountain area[M]. Beijing: Science Press, 2014.
[42] Parzene. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962,33(3):1065-1076.
[43] 罗宇翔, 陈娟, 郑小波. 近10年中国大陆MODIS遥感气溶胶光学厚度特征[J]. 生态环境学报, 2012,21(5):876-883.
Luo Y X, Chen J, Zheng X B. Characteristics of MODIS remote sensing aerosol optical thickness in mainland China in recent 10 years[J]. Journal of Ecological Environment, 2012,21(5):876-883.
[44] 王银牌, 喻鑫, 谢广奇. 中国近15年气溶胶光学厚度时空分布特征[J]. 中国环境科学, 2018,38(2):426-434.
Wang Y P, Yu X, Xie G Q. Temporal and spatial distribution characteristics of aerosol optical thickness in China in recent 15 years[J]. China Environmental Science, 2018,38(2):426-434.
[1] 施益强, 邓秋琴, 吴君, 王坚. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 32(1): 106-114.
[2] 李恺霖, 张春桂, 廖廓, 李丽纯, 王宏. 福建省空气清新度卫星遥感监测[J]. 国土资源遥感, 2019, 31(4): 151-158.
[3] 张明明, 程东兵, 齐建华, 胡建春, 罗晶. 基于卫星遥感的池州市气溶胶光学厚度时空分布[J]. 国土资源遥感, 2017, 29(4): 147-155.
[4] 佃袁勇, 方圣辉, 徐永荣. 一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感, 2015, 27(2): 22-28.
[5] 范东福, 杨书运, 吴必文, 范东勤, 王俊, 江波, 陈晓龙. 基于AOD数据的秸秆焚烧监测[J]. 国土资源遥感, 2015, 27(2): 133-138.
[6] 程晨, 陈健, 李鑫慧. 基于TM图像的南京市气溶胶光学厚度反演[J]. 国土资源遥感, 2013, 25(3): 90-96.
[7] 夏双, 阮仁宗, 张月, 颜梅春. 气溶胶光学厚度对蓝藻水华信息提取的影响[J]. 国土资源遥感, 2013, 25(1): 33-38.
[8] 马晓红, 余涛, 高海亮, 陈兴峰, 谢玉娟, 韩杰. 内蒙古辐射校正场特性评价与应用潜力分析[J]. 国土资源遥感, 2011, 23(4): 31-36.
[9] 夏丽华, 王德辉, 王芳. 基于MODIS数据的广州市光化学污染预警等级研究[J]. 国土资源遥感, 2006, 18(4): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发