Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (2): 22-28    DOI: 10.6046/gtzyyg.2015.02.04
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法
佃袁勇1, 方圣辉2, 徐永荣1
1. 华中农业大学园艺林学学院, 武汉 430070;
2. 武汉大学遥感信息工程学院, 武汉 430079
An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content
DIAN Yuanyong1, FANG Shenghui2, XU Yongrong1
1. College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China;
2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
全文: PDF(4875 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

大气校正是高光谱图像定量反演地表参数的前提。为充分利用高光谱数据本身的光谱特点,提出了一种协同反演大气气溶胶光学厚度(aerosol optical thickness,AOT)与水汽含量(water vapor content,WV)的大气校正方法,在同时考虑了气溶胶模式、AOT和WV这3个因素的综合影响基础上,采用循环迭代的思想,基于6S辐射传输模型,反演大气参数及地表反射率,弥补了现有反演算法中没有同时考虑AOT与WV的不足; 并以武汉市Hyperion高光谱图像为例,验证了该算法的有效性。从与FLAASH算法及MOIDS提供的AOT和WV产品对比来看,该算法能较好地校正气溶胶与水汽对高光谱图像的影响,且反演过程中所有的输入均来自图像数据本身或6S辐射传输模型,无需输入额外的参数。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨成生
刘媛媛
敖萌
关键词 短基线集(SBAS)地面沉降InSAR大同地下水开采    
Abstract

Atmospheric correction is the basic step in quantitative retrieval of land surface parameters with hyperspectral imagery. Based on abundant spectral information in the hyperspectral image,this paper presents a new atmospheric correction algorithm for hyperspectral imagery characterized by collaborative retrieval of the aerosol optical thickness (AOT) and the water vapor content (WV). The algorithm takes into account the effects of aerosol type,AOT and WV,and uses the iteration method combined with the 6S(second simulation of the satellite signal in the solar spectrum)radiative transfer model to retrieve the atmospheric parameters and ground reflectance. This new method overcomes the weakness of the existing atmospheric correction algorithms which fail to consider the effects of both AOT and WV. Hyperion hyperspectral image data covering Wuhan City were used to verify the effectiveness of the algorithm proposed in this paper,with the results compared with those of FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)method in ENVI and MODIS's AOT and WV products. It is shown that the proposed algorithm can better correct the effect of aerosol and water vapor in the atmosphere,and needs no additional parameters because all the inputs are taken from the image data themselves or the 6S radiative transfer model in the inversion process.

Key wordssmall baseline subset(SBAS)    ground subsidence    InSAR    Datong    groundwater exploitation
收稿日期: 2013-11-04      出版日期: 2015-03-02
:  TP751.1  
基金资助:

国家863项目"多尺度遥感数据按需快速处理与定量遥感产品生成关键技术"(编号: 2012AA12A304)和"作物生长信息的数字化获取与解析技术"(编号: 2013AA102401)、国家自然科学基金项目"基于叶面积指数的城市绿地固碳释氧与降温增湿功能反演"(编号: 31270744)、中央高校基本科研业务费专项资金项目"基于时间序列遥感影像的三峡库区森林覆盖及动态变化监测"(编号: 2014QC018)和地理国情监测国家测绘地理信息局重点实验室项目"多分辨率遥感影像的变化检测算法研究"(编号: 2013NGC05)共同资助。

作者简介: 佃袁勇(1981-),男,博士,讲师,主要从事遥感在资源环境中的应用方面的研究。Email:dianyuanyong@126.com。
引用本文:   
佃袁勇, 方圣辉, 徐永荣. 一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感, 2015, 27(2): 22-28.
DIAN Yuanyong, FANG Shenghui, XU Yongrong. An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 22-28.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.02.04      或      https://www.gtzyyg.com/CN/Y2015/V27/I2/22

[1] Barducci A,Guzzi D,Marcoionni P,et al.Algorithm for the retrieval of columnar water vapor from hyperspectral remotely sensed data[J].Applied Optics,2004,43(29):5552-5563.

[2] Li B G,Yuan H S,Feng N,et al.Comparing MODIS and AERONET aerosol optical depth over China[J].International Journal of Remote Sensing,2009,30(24):6519-6529.

[3] Levy R C,Remer L A,Dubovik O.Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land[J].Journal of Geophysical Research:Atmospheres,2007,112(D13):D13210.

[4] 夏双,阮仁宗,张月,等.气溶胶光学厚度对蓝藻水华信息提取的影响[J].国土资源遥感,2013,25(1):33-38.doi:10.6046/gtzyyg.2013.01.06. Xia S,Ruan R Z,Zhang Y,et al.Effects of aerosol optical thickness on extracting cyanbacteria bloom[J].Remote Sensing for Land and Resources,2013,25(1):33-38.doi:10.6046/gtzyyg.2013.01.06.

[5] Levy R C,Remer L A,Mattoo S,et al.Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance[J].Journal of Geophysical Research:Atmospheres,2007,112(D13):D13211.

[6] Remer L A,Kaufman Y J,Tanré D,et al.The MODIS aerosol algorithm,products,and validation[J].Journal of the Atmospheric Sciences,2005,62(4):947-973.

[7] 徐永明,覃志豪,陈爱军.基于查找表的MODIS逐像元大气校正方法研究[J].武汉大学学报:信息科学版,2010,35(8):959-962. Xu Y M,Qin Z H,Chen A J.A pixel-by-pixel atmospheric correction algorithm for MODIS data based on look-up table[J].Geomatics and Information Science of Wuhan University,2010,35(8):959-962.

[8] 赵祥,梁顺林,刘素红,等.高光谱遥感数据的改正暗目标大气校正方法研究[J].中国科学:地球科学,2007,37(12):1653-1659. Zhao X,Liang S L,Liu S H,et al.Atmospheric correction with Hyperspectral image data based on modified dark object method[J].Scientia Sinica Terrae,2007,37(12):1653-1659.

[9] 郑求根,权文婷.基于暗像元的Hyperion高光谱影像大气校正[J].光谱学与光谱分析,2010,30(10):2710-2713. Zheng Q G,Quan W T.Application of dark pixels atmospheric correction algorithm to Hyperion imageries[J].Transactions of Spectroscopy and Spectral Analysis,2010,30(10):2710-2713.

[10] 胡方超,王振会,张兵,等.遥感试验数据确定大气气溶胶类型的方法研究[J].中国激光,2009,36(2):312-317. Hu F C,Wang Z H,Zhang B,et al.Study on method for determining atmospheric aerosol type using remote sensing experimental data[J].Chinese Journal of Lasers,2009,36(2):312-317.

[11] 唐洪钊,晏磊,李成才,等.基于MODIS高分辨率气溶胶反演的ETM+影像大气校正[J].地理与地理信息科学,2010,26(4):12-15. Tang H Z,Yan L,Li C C,et al.Atmospheric correction for ETM+ imagery based on high resolution aerosol optical depth retrieved from MODIS data[J].Transactions of Geography and Geo-Information Science,2010,26(4):12-15.

[12] 袁金国,牛铮,王锡平.基于FLAASH的Hyperion高光谱影像大气校正[J].光谱学与光谱分析,2009,29(5):1181-1185. Yuan J G,Niu Z,Wang X P.Atmospheric correction of Hyperion hyperspectral image based on FLAASH[J].Transactions of Spectroscopy and Spectral Analysis,2009,29(5):1181-1185.

[13] Liang S L,Fang H L.An improved atmospheric correction algorithm for hyperspectral remotely sensed imagery[J].Geoscience and Remote Sensing Letters,IEEE,2004,1(2):112-117.

[14] 程晨,陈健,李鑫慧.基于TM图像的南京市气溶胶光学厚度反演[J].国土资源遥感,2013,25(3):90-96.doi:10.6046/gtzyyg.2013.03.16. Cheng C,Chen J,Li X H.Retrieving aerosol optical depth over Nanjing City based on TM image[J].Remote Sensing for Land and Resources,2013,25(3):90-96.doi:10.6046/gtzyyg.2013.03.16.

[15] 杨磊,潘志强,傅俏燕,等.资源三号卫星多光谱数据的大气校正研究[J].光谱学与光谱分析,2013,33(7):1903-1907. Yang L,Pan Z Q,Fu Q Y,et al.Research on the atmospheric correction for ZY-3 MUX image[J].Spectroscopy and Spectral Analysis,2013,33(7):1903-1907.

[16] 方莉,余涛,顾行发,等.北京地区HJ-1卫星CCD数据的气溶胶反演及在大气校正中的应用[J].遥感学报,2013,17(1):151-164. Fang L,Yu T,Gu X F,et al.Aerosol retrieval and atmospheric correction of HJ-1 CCD data over Beijing[J].Journal of Remote Sensing,2013,17(1):151-164.

[17] 杨贵军,黄文江,刘三超,等.环境减灾卫星高光谱数据大气校正模型及验证[J].北京大学学报:自然科学版,2010,46(5):821-828. Yang G J,Huang W J,Liu S C,et al.Research on modeling and validating of atmospheric correction for HJ-1A hyperspectral imager data[J].Transactions of Peking University:Natural Science Edition,2010,46(5):821-828.

[18] Kaufman Y J,Gao B C.Remote sensing of water vapor in the near IR from EOS/MODIS[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):871-884.

[19] Gao B C,Kaufman Y J.Water vapor retrievals using moderate resolution imaging spectroradiometer(MODIS)near-infrared channels[J].Journal of Geophysical Research:Atmospheres,2003,108(D13):4389.

[20] 姜立鹏,覃志豪,谢雯.针对MODIS近红外数据反演大气水汽含量研究[J].国土资源遥感,2006,18(3):5-9.doi:10.6046/gtzyyg.2006.03.02. Jiang L P,Qin Z H,Xie W.Retrieving atmospheric water vapor from MODIS near infrared data[J].Remote Sensing for Land and Resources,2006,18(3):5-9.doi:10.6046/gtzyyg.2006.03.02.

[21] 周春艳,柳钦火,唐勇.MODIS气溶胶C004、C005产品的对比分析及其在中国北方地区的适用性评价[J].遥感学报,2009,13(5):863-872. Zhou C Y,Liu Q H,Tang Y.Comparison between MODIS aerosol product C004 and C005 and evaluation of their applicability in the north of China[J].Transactions of Journal of Remote Sensing,2009,13(5):863-872.

[22] 佃袁勇.高光谱数据反演植被信息的研究[D].武汉:武汉大学,2011. Dian Y Y.Inversion Vegetation Information Based on Hyperspectral Remote Sensing Data[D].Wuhan:Wuhan University,2011.

[23] Laurent V C E,Verhoef W,Clevers J G P W,et al.Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models[J].Remote Sensing of Environment,2011,115(4):1043-1052.

[24] 陈新芳,陈镜明,安树青,等.不同大气校正方法对森林叶面积指数遥感估算影响的比较[J].生态学杂志,2006,25(7):769-773. Chen X F,Chen J M,An S Q,et al.Comparison of different atmospheric correction models in their effects on Landsat TM estimation of forest leaf area index[J].Chinese Journal of Ecology,2006,25(7):769-773.

[25] Vermote E F,Tanré D,DeuzéJ L,et al.Second simulation of the satellite signal in the solar spectrum,6S:An overview[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686.

[1] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[2] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
[3] 李梦梦, 范雪婷, 陈超, 李倩楠, 杨锦. 徐州矿区2016—2018年地面沉降监测与分析[J]. 自然资源遥感, 2021, 33(4): 43-54.
[4] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[5] 沙永莲, 王晓文, 刘国祥, 张瑞, 张波. 基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3): 194-201.
[6] 张腾, 谢帅, 黄波, 范景辉, 陈建平, 童立强. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2): 213-219.
[7] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[8] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4): 16-22.
[9] 张玲, 刘斌, 葛大庆, 郭小方. 基于多源SAR数据唐山城区活动断裂微小差异形变探测[J]. 国土资源遥感, 2020, 32(3): 114-120.
[10] 汪宝存, 朱琳, 潘登, 郭凌飞, 彭鹏. 郑州市地面沉降时空演变规律研究[J]. 国土资源遥感, 2020, 32(3): 143-148.
[11] 朱茂, 沈体雁, 黄松, 白书建, 葛春青, 胡琼. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019, 31(2): 196-203.
[12] 张晓婧, 陈蓓蓓, 雷坤超, 陈文锋, 高明亮, 周超凡, 段光耀. 京津高铁沿线地面沉降特征(北京段)[J]. 国土资源遥感, 2019, 31(1): 171-179.
[13] 汪东, 来风兵, 陈孟禹, 陈蜀江, 黄铁成, 贾翔. 基于InSAR技术天山乌吐劲河谷同震形变遥感研究[J]. 国土资源遥感, 2019, 31(1): 187-194.
[14] 张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4): 200-205.
[15] 范景辉, 王如意, 赵红丽, 李雁明, 林昊, 燕云鹏. 地面沉降光栅立体图研究制作[J]. 国土资源遥感, 2018, 30(4): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发