Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 194-201    DOI: 10.6046/zrzyyg.2020026
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演
沙永莲1,2(), 王晓文1,3(), 刘国祥1,3, 张瑞1,3, 张波1
1.西南交通大学地球科学与环境工程学院,成都 611756
2.北京理工大学重庆创新中心,重庆 401120
3.高速铁路运营安全空间信息技术国家地方联合工程实验室,成都 611756
SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang
SHA Yonglian1,2(), WANG Xiaowen1,3(), LIU Guoxiang1,3, ZHANG Rui1,3, ZHANG Bo1
1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
3. State-province Joint Engineering Laboratory of Spatial Information Technology of High-speed Railway Safety, Chengdu 611756, China
全文: PDF(3633 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

矿区地表沉陷监测能够为当地安全生产防护、开采规划和管理提供关键支撑信息。以新疆哈密砂墩子煤田矿区为研究对象,利用SBAS InSAR方法调查了其于2018年9月—2019年10月期间的地表沉陷特征。InSAR形变监测结果显示砂墩子矿主井西北侧存在一个沉陷漏斗,最大年均沉陷速率约为150 mm/a。时序形变结果显示沉陷漏斗在2018年9月—2019年6月间发生明显线性下沉,而之后逐渐趋于稳定。基于InSAR观测形变,采用Okada矩形位错模型反演得到砂墩子矿综采面采深约349.89 m,走向长约1 001.27 m,倾向宽约211.80 m; 结合煤层视密度估算得到该矿在2018—2019年间开采量约3.18 Mt,与已有资料报道的该矿年产能基本一致。本研究为利用InSAR形变约束反演煤矿综采面参数,并结合煤层视密度构建综采面参数与开采量之间关系提供了一种可行思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沙永莲
王晓文
刘国祥
张瑞
张波
关键词 开采沉陷砂墩子矿SBAS InSAR参数反演    
Abstract

The monitoring of surface subsidence in mining areas can provide key information for local production safety protection and mining planning and management. Based on the Sentinel-1A images from September 2018 to October 2019, this study characterized the surface subsidence in the mining area of the Shadunzi Coal Mine in Hami City, Xinjiang, China using the combined small baseline subset (SBAS) and interferometric synthetic aperture radar (InSAR) analysis. The InSAR measurement results revealed a subsidence funnel with a maximum subsidence rate of about -150 mm/a to the northwest of the main shaft of the coal mine. As indicated by the displacement time series, the subsidence funnel showed a significant linear subsidence pattern from September 2018 to June 2019 and gradually stabilized thereafter. Then the surface deformation inversion was conducted using the Okada rectangular dislocation model to obtain the parameters of the working face of the coal mine. The modeling results showed that the working face had a depth of about 349.89 m, a length of about 1 001.27 m, and a width of about 211.80 m. Based on the inversion results as well as the apparent density of the coal seams, the annual mining capacity of the coal mine was estimated to be about 3.18 Mt during 2018—2019, which is consistent with the reported annual production capacity of the coal mine. This paper provides a feasible way to conduct the parameter inversion of coal mine working face under the constraints of InSAR measurements and to infer the relationship between the working face parameters and the mining capacity according to the apparent density of coal seams.

Key wordsmining-induced surface subsidence    Shadunzi Coal Mine    SBAS-InSAR    parameter inversion
收稿日期: 2020-01-19      出版日期: 2021-09-24
ZTFLH:  TP79  
基金资助:国家重点研发计划“星载SAR综合环境监测高精度数据处理与反演技术”(2017YFB0502704);国家自然科学基金(面上项目)“基于多时相SAR的横断山东缘活动石冰川探测与失稳控制评价”(42071410);国家自然科学基金(青年项目)“基于卫星InSAR的昆仑山口活动石冰川识别及运动特征分析”(41804009);四川省科技厅应用基础面上项目“川藏铁路冻融边坡InSAR时序形变监测与运动特征分析”(2020YJ0322);重庆市自然科学基金杰出青年基金项目“雷达精细信号处理”(cstc2020jcyj-jqX0008)
通讯作者: 王晓文
作者简介: 沙永莲(1994-),女,硕士,研究方向为合成孔径雷达干涉测量与应用。Email: syl973281310@163.com
引用本文:   
沙永莲, 王晓文, 刘国祥, 张瑞, 张波. 基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3): 194-201.
SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020026      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/194
Fig.1  砂墩子煤矿地理位置及其周边地形图
Fig.2  SBAS InSAR时空基线分布图
Fig.3  Okada矩形位错模型示意图
Fig.4  基于矩形位错模型的贝叶斯参数反演流程图
Fig.5  基于SBAS InSAR的砂墩子矿年均沉陷速率和沿A1A2和B1B2剖面线地表沉陷速度变化
Fig.6  SBAS InSAR获取的4个特征点时序累积沉降量
模型参数 最优估值
X/m 968.636
Y/m -1 739.450
深度/m 349.889
走向长/m 1 001.270
倾向宽/m 211.795
走向/(°) 177.408
倾角/(°) 6.012
张裂量/m -0.861
Tab.1  砂墩子矿综采面最优拟合参数
Fig.7  反演参数与InSAR形变结果的叠加示意图
Fig.8  InSAR观测形变与模拟形变对比
[1] 张方哲. 中国煤矿资源评估与开发可行性研究[D]. 北京:中国地质大学(北京),2010.
Zhang F Z. Coal resource assesment and development feasibility study of China[D]. Beijing:China University of Geosciences(Beijing),2010.
[2] 何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1991.
He G Q, Yang L, Ling G D, et al. Mining subsidence theory[M]. Xuzhou: China University of Mining & Technology Publisher,
[3] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
[4] 王志勇, 张继贤, 黄国满. 基于InSAR的济宁矿区沉降精细化监测与分析[J]. 中国矿业大学学报, 2014, 43(1):169-174.
Wang Z Y, Zhang J X, Huang G M. Precise monitoring and analysis of the land subsidence in Jining coal mining area based on InSAR technique[J]. Journal of China University of Mining & Technology, 2014, 43(1):169-174.
[5] 马飞虎, 姜珊珊, 孙翠羽. PSInSAR在铅山县矿区地表沉降监测中的应用[J]. 应用科学学报, 2018, 36(6):95-103.
Ma F H, Jiang S S, Sun C Y. Application of PSInSAR in monitoring land subsidence in Yanshan mining area[J]. Journal of Applied Sciences-Eletronics and Information Engineering, 2018, 36(6):95-103.
[6] 李德仁. InSAR技术进步与地面沉降监测应用[J]. 上海国土资源, 2013, 34(4):1-6.
Li D R. InSAR Technological progress and its application to land subsidence monitoring[J]. Shanghai Land & Resources, 2013, 34(4):1-6.
[7] Zebker H A, Rosen P A, Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research, 1997, 102(B4):7547-7563.
doi: 10.1029/96JB03804
[8] Ferretti A, Prati C, Rocca F. Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
doi: 10.1109/36.868878
[9] 葛大庆, 王艳, 范景辉, 等. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007, 19(4):14-22.doi: 10.6046/gtzyyg.2007.04.03.
doi: 10.6046/gtzyyg.2007.04.03
Ge D Q, Wang Y, Fan J H, et al. A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems[J]. Remote Sensing for Land and Resources, 2007, 19(4):14-22.doi: 10.6046/gtzyyg.2007.04.03.
doi: 10.6046/gtzyyg.2007.04.03
[10] Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J]. Remote Sensing of Environment, 2006, 102(3-4):195-210.
doi: 10.1016/j.rse.2006.01.023
[11] Williams S, Bock Y, Fang P. Integrated satellite interferometry:Tropospheric noise,GPS estimates and implications for interferometric synthetic aperture radar products[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B11).
[12] 尹宏杰, 朱建军, 李志伟. 基于SBAS的矿区形变监测研究[J]. 测绘学报, 2011, 40(1):52-58.
Yin H J, Zhu J J, Li Z W. Ground subsidence monitoring in mining area using DInSAR SBAS algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):52-58.
[13] 赵伟颖, 邓喀中, 杨俊凯, 等. 基于SBAS技术的采动区形变对建筑物的影响监测[J]. 煤矿安全, 2015, 485(2):205-208.
Zhao W Y, Deng K Z, Yang J K, et al. Monitoring on influence of mining area deformation based on SBAS technology on buildings[J]. Safety in Coal Mines, 2015, 485(2):205-208.
[14] 李达. 时序SAR技术在矿区形变监测中的应用[D]. 徐州:中国矿业大学, 2017.
Li D. Application of timing series SAR technology in deformation monitoring of mining area[D]. Xuzhou:China University of Mining, 2017.
[15] 阎跃观, 代文晨, 赵传武, 等. 基于SBAS-InSAR技术的矿区地表移动规律研究[J]. 中国矿业, 2019, 28(s2):177-180.
Yan Y G, Dai W C, Zhao C W, et al. Surface movement law of mining area based on SBAS-InSAR technology[J]. China Mining Magazine, 2019, 28(s2):177-180.
[16] 王亚男. InSAR技术用于矿区大量级塌陷监测研究[D]. 西安:长安大学, 2011.
Wang Y N. Research on large-scale mining collapse monintoring with InSAR technology[D]. Xi’an:Chang’an University, 2011.
[17] 朱煜峰. 矿区地面沉降的InSAR监测及参数反演[D]. 湖南:中南大学, 2013.
Zhu Y F. Analysis of ground subsidence monitoring in mining area using InSAR with parameter inversion[D]. Hunan:Central South University, 2013.
[18] 赵鑫. 基于RS,GIS的哈密三道岭矿区生态环境调查与评价[D]. 西安:西安科技大学, 2013.
Zhao X. Environmental investigation and assessment based on RS &GIS in Hami Sandaolin mining area[D]. Xi’an:Xi’an University of Science and Technology, 2013.
[19] 李凡. 潞安新疆煤化工(集团)有限公司砂墩子矿井3.00 Mt/年(一期)矿井建设项目环境影响评价公众参与第二次公示[R]. 新疆:新疆生态环保产业协会, 2017.
Li F. Lu’an Xinjiang Coal Chemical Industry (Group) Co.,Ltd.Shadunzi Mine 3.00 Mt/year(Phase 1)mine construction project environmental impact assessment public participation second public notice[R]. Xinjiang:Xinjiang Ecological Environmental Protection Industry Association, 2017.
[20] Paolo B, Gianfranco F, Riccardo L, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(11):2375-2383.
[21] Hooper A, Zebker H, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611.
[22] Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302.
doi: 10.1029/2008GL034654
[23] 王琪. 利用永久散射体雷达干涉技术进行太原市地面沉降监测[J]. 测绘通报, 2014(5):71-75.
Wang Q. A study of ground deformation over Taiyuan City using PS-InSAR technique[J]. Bulletin of Surveying and Mapping, 2014(5):71-75.
[24] Mostafa E, Mahdi M, Andy H. Application of dual-polarimetry SAR images in multitemporal InSAR processing[J]. IEEE Geoscience & Remote Sensing Letters, 2017, PP(99):1-5.
[25] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bull.Seismol.Soe.Am., 1985, 75(4):1135-1154.
[26] Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bull.Seismol.Soe.Am., 1992, 82(2):1018-1040.
[27] Yang X M, Davis P M, Dieterich J H. Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing[J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B5):4249-4257.
[28] Carnec C, Fabriol H. Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field,Baja California,Mexico,using SAR interferometry[J]. Geophysical Research Letters, 1999, 26(9):1211-1214.
doi: 10.1029/1999GL900062
[29] 杨崇. 辽河油田地表沉降InSAR监测及储层参数反演[D]. 成都:西南交通大学, 2019.
Yang C. Surface subsidence InSAR monitoring and reservoir parameter inversion in liaohe oilfield[D]. Chengdu:Southwest Jiaotong University, 2019.
[30] 国家安全监管总局. 监总煤行(2014)61号—2014煤矿生产能力核定标准[S]. 北京:煤矿安监局行业安全基础管理指导司,2014.
State Administration of Work Safety State Council. No.61—2014 Verification standard of coal mine production capacity[S]. Beijing:Safety Supervision General Coal Bank, 2014.
[1] 马振宇, 陈博伟, 庞勇, 廖声熙, 覃先林, 张怀清. 基于林火特征分类模型的森林火情等级制图[J]. 国土资源遥感, 2020, 32(1): 43-50.
[2] 杨崇, 刘国祥, 于冰, 张波, 张瑞, 王晓文. 基于InSAR形变的辽河油田曙光采油厂储层参数反演[J]. 国土资源遥感, 2020, 32(1): 209-215.
[3] 刘一霖, 张勤, 黄海军, 杨成生, 赵超英. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017, 29(2): 144-151.
[4] 陈丹蕾, 刘国祥, 王晓文, 王蕾, 蒲慧龙. 基于DInSAR技术与断层自动剖分方法反演断层滑动参数[J]. 国土资源遥感, 2016, 28(3): 25-30.
[5] 李芹, 钟若飞. 模拟AMSR-E数据的地表多参数反演[J]. 国土资源遥感, 2011, 23(1): 42-47.
[6] 李飞, 种劲松, 欧阳越. 基于仿真修正的序列SAR图像内波参数反演方法[J]. 国土资源遥感, 2008, 20(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发