Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (2): 144-151    DOI: 10.6046/gtzyyg.2017.02.21
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
矿区地表大量级沉陷形变短基线集InSAR监测分析
刘一霖1, 2, 3, 张勤2, 黄海军1, 3, 杨成生2, 赵超英2
1.中国科学院海洋研究所海洋地质与环境重点实验室,青岛 266071;
2.长安大学地质工程与测绘学院,西安 710054;
3.中国科学院大学,北京 100049
Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR
LIU Yilin1, 2, 3, ZHANG Qin2, HUANG Haijun1, 3, YANG Chengsheng2, ZHAO Chaoying2
1. Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071,China;
2. College of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(1087 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 针对矿区地表大量级形变导致的InSAR影像配准精度低、可监测性差、探测量级小、地表沉陷前后完整形变信息难以获取等问题,研究了相应的偏移量追踪法、FFT过采样法、滤波技术与基线精化等数据处理方法,并利用短基线集(small baseline subset,SBAS)技术,使距离向配准精度、最大累积探测量级得到明显提高,矿区地表形变可监测性有了很大改善。研究结果表明,该方法不仅获得了2008—2011年间研究区开采进程中地表大量级沉陷的完整形变时间序列,而且其监测结果与外业实测数据以及采矿进程资料具有良好的一致性; 通过对矿区地表形变剖线的统计分析,得到了开采工作面地表形变的时空演变规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于峻川
刘文良
闫柏琨
董新丰
王喆
李娜
关键词 玄武岩地球化学成分反演实测光谱偏最小二乘回归(PLSR)柳园    
Abstract:Due to large scale earth surface deformation, the application of conventional InSAR technique to monitor land subsidence over the mining area has many limitations, such as low image co-registration accuracy and monitoring capability, small detection scale and unavailable complete mining subsidence information. In view of such a situation, the small baseline subset (SBAS) InSAR technique combined with offset tracking method, fast fourier transformation oversampling technique, filter technique and baseline refine method was studied in this paper to overcome the limitations. On such a basis, the co-registration accuracy, monitoring capability and the accumulative detection scale could be improved considerably. Meanwhile, the complete large scale time series deformation over the mining area from 2008 to 2011 was generated, which is well consistent with field and mining processing data. Furthermore, spatial and temporal evolution law of earth surface over the mining area was obtained by analyzing the cross-section time series deformation.
Key wordsbasalt    geochemical compositions    inversion    field measured spectra    partial least squares regression(PLSR)    Liuyuan
收稿日期: 2015-11-20      出版日期: 2017-05-03
基金资助:国家自然科学基金项目“多分辨率雷达干涉融合技术用于矿区塌陷灾害研究”(编号: 41072266)、国家自然科学基金项目“黄河三角洲地面沉降监测与形成机理研究”(编号: 41276082)、国家自然科学基金项目“渤海西南岸末次冰期以来古海岸线重建及影响因素分异研究”(编号: 41106041)、中国科学院知识创新工程重要方向性项目“现代黄河口三角洲垂向形变驱动机制与环境效应研究”(编号: KZCX2-EW-207)及国土资源大调查项目“汾渭盆地重点地区地面沉降地裂缝InSAR与GPS监测”(编号: 1212011120069)共同资助
通讯作者: 张 勤(1958-),女,教授,博士生导师,主要从事GPS、InSAR及地质灾害监测方面的研究。 Email: zhangqinle@263.net.cn
作者简介: 刘一霖(1986-),男,博士生,主要从事地质遥感InSAR研究与应用,Email: lyilin@msn.com。
引用本文:   
刘一霖, 张勤, 黄海军, 杨成生, 赵超英. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017, 29(2): 144-151.
LIU Yilin, ZHANG Qin, HUANG Haijun, YANG Chengsheng, ZHAO Chaoying. Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 144-151.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.21      或      https://www.gtzyyg.com/CN/Y2017/V29/I2/144
[1] 何国清,杨 伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
He G Q,Yang L,Ling G D,et al.Mining Subsidence[M].Xuzhou:China University of Mining and Technology Press,1991.
[2] 刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
Liu B C,Liao G H.Basic Rule of Coal Surface Movement[M].Beijing:China Industry Press,1965.
[3] 吴立新,高均海,葛大庆,等.基于D-InSAR的煤矿区开采沉陷遥感监测技术分析[J].地理与地理信息科学,2004,20(2):22-25,37.
Wu L X,Gao J H,Ge D Q,et al.Technical analysis of the remote sensing monitoring for coal-mining subsidence based on D-InSAR[J].Geography and Geo-Information Science,2004,20(2):22-25,37.
[4] 吴立新,高均海,葛大庆,等.工矿区地表沉陷D-InSAR监测试验研究[J].东北大学学报:自然科学版,2005,26(8):778-782.
Wu L X,Gao J H,Ge D Q,et al.Experimental study on surface subsidence monitoring with D-InSAR in mining area[J].Journal of Northeastern University:Natural Science,2005,26(8):778-782.
[5] 杨成生.基于D-InSAR技术的煤矿沉陷监测[D].西安:长安大学,2008.
Yang C S.Based on D-InSAR Technology in Coal Mine Subsidence Monitoring[D].Xi’an:Chang’an University,2008.
[6] 朱建军,邢学敏,胡 俊,等.利用InSAR技术监测矿区地表形变[J].中国有色金属学报,2011,21(10):2564-2576.
Zhu J J,Xing X M,Hu J,et al.Monitoring of ground surface deformation in mining area with InSAR technique[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2564-2576.
[7] Ge L L,Chang H C,Rizos C.Mine subsidence monitoring using multi-source satellite SAR images[J].Photogrammetric Engineering & Remote Sensing,2007,73(3):259-266.
[8] Ng A H M,Ge L L,Yan Y G,et al.Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia[J].Engineering Geology,2010,115(1/2):1-15.
[9] 刘一霖.矿区开采沉陷大量级形变监测与反演分析[D].西安:长安大学,2013.
Liu Y L.The Monitoring and Inverse of Large Scale Deformation of Minging Subsidence[D].Xi’an:Chang’an University,2013.
[10] Werner C,Wegmüller U,Strozzi T,et al.Gamma SAR and interferometric processing software[C]//Proceedings of the ERS-ENVISAT Symposium.Gothenburg,Sweden:[s.n.],2000.
[11] Berardino P,Fornaro G,Lanari R,et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
[12] Lanari R,Mora O,Manunta M,et al.A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(7):1377-1386.
[13] Lanari R,Casu F,Manzo M,et al.An overview of the small baseline subset algorithm:A DInSAR technique for surface deformation analysis[J].Pure and Applied Geophysics,2007,164(4):637-661.
[14] 廖明生,林 珲.雷达干涉测量:原理与信号处理基础[M].北京:测绘出版社,2003:45-52.
Liao M S,Lin H.Synthetic Aperture Radar Interferometry-Principle and Signal Processing[M].Beijing:Surveying and Mapping Press,2003:45-52.
[15] Strozzi T,Luckman A,Murray T,et al.Glacier motion estimation using SAR offset-tracking procedures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2384-2391.
[16] Strozzi T,Kouraev A,Wiesmann A,et al.Estimation of Arctic glacier motion with satellite L-band SAR data[J].Remote Sensing of Environment,2008,112(3):636-645.
[17] Werner C,Strozzi T,Wiesmann A,et al.Complimentary measurement of geophysical deformation using repeat-pass SAR[C]//Proceedings of 2001 IEEE International Geoscience and Remote Sensing Symposium.Sydney,NSW:IEEE,2001,7:3255-3258.
[18] Werner C,Wegmüller U,Strozzi T,et al.Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images[C]//Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium.Seoul:IEEE,2005:4803-4805.
[19] Wegmüller U,Werner C,Strozzi T,et al.Automated and precise image registration procedures[J].Analysis of Multi-temporal Remote Sensing Images,2002,2:37-49.
[20] Wegmüller U,Werner C,Strozzi T,et al.Ionospheric electron concentration effects on SAR and INSAR[C]//Proceedings of 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium.Denver,CO,USA:IEEE,2006:3731-3734.
[21] Chen C W,Zebker H A.Phase unwrapping for large SAR interferograms:Statistical segmentation and generalized network models[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1709-1719.
[22] Lu Z,Wicks Jr C.Characterizing 6 August 2007 crandall canyon mine collapse from ALOS PALSAR InSAR[J].Geomatics,Natural Hazards and Risk,2010,1(1):85-93.
[1] 孙一鸣, 张宝钢, 吴其重, 刘奥博, 高超, 牛静, 何平. 国产微景一号小卫星影像的城市裸地识别应用[J]. 自然资源遥感, 2022, 34(1): 189-197.
[2] 沙永莲, 王晓文, 刘国祥, 张瑞, 张波. 基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3): 194-201.
[3] 杜程, 李得林, 李根军, 杨雪松. 基于高原盐湖光谱特性下的溶解氧反演应用与探讨[J]. 自然资源遥感, 2021, 33(3): 246-252.
[4] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[5] 杨立娟. 基于两层随机森林模型估算中国东部沿海地区的PM2.5浓度[J]. 国土资源遥感, 2020, 32(4): 137-144.
[6] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[7] 马振宇, 陈博伟, 庞勇, 廖声熙, 覃先林, 张怀清. 基于林火特征分类模型的森林火情等级制图[J]. 国土资源遥感, 2020, 32(1): 43-50.
[8] 杨崇, 刘国祥, 于冰, 张波, 张瑞, 王晓文. 基于InSAR形变的辽河油田曙光采油厂储层参数反演[J]. 国土资源遥感, 2020, 32(1): 209-215.
[9] 贺军亮, 韩超山, 韦锐, 周智勇, 东启亮. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019, 31(4): 96-103.
[10] 封红娥, 李家国, 朱云芳, 韩启金, 张宁, 田淑芳. GF-1与Landsat8水体叶绿素a浓度协同反演——以太湖为例[J]. 国土资源遥感, 2019, 31(4): 182-189.
[11] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[12] 樊宪磊, 阎宏波, 瞿瑛. 基于HJ-1A/B CCD地表反照率估算方法比较与验证[J]. 国土资源遥感, 2019, 31(3): 123-131.
[13] 高晨, 徐健, 高丹, 王莉莉, 王野乔. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 国土资源遥感, 2019, 31(1): 101-109.
[14] 吴莹, 姜苏麟, 王振会. 无线电频率干扰对MWRI资料反演地表温度的影响[J]. 国土资源遥感, 2018, 30(4): 90-96.
[15] 李军, 董恒, 王祥, 游林. 基于最优插值的土壤含水量遥感反演缺失数据插补[J]. 国土资源遥感, 2018, 30(2): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发