Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 99-106    DOI: 10.6046/zrzyyg.2021411
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
耦合非局部自相似性与散度的SAR与光学影像融合
付昱凯1(), 杨树文1,2,3(), 闫恒1, 薛庆1, 洪卫丽1, 苏航1
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence
FU Yukai1(), YANG Shuwen1,2,3(), YAN Heng1, XUE Qing1, HONG Weili1, SU Hang1
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(4069 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

SAR与光学影像的高质量融合应用是目前研究的热点问题之一,然而二者间辐射差异大、灰度相关性弱等问题,严重影响了融合质量。为此,该文提出一种耦合非局部自相似性与散度的SAR与光学影像融合算法。首先在频率域将影像分解,然后使用非局部方向熵和散度作为特征量分别指导低频和高频分量进行融合,最后将融合分量重建,得到兼具清晰结构特征和丰富光谱信息的融合影像。通过对比实验,证明所提算法在融合SAR与光学影像方面的有效性,及其在保持结构特征和减小光谱扭曲方面的优越性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付昱凯
杨树文
闫恒
薛庆
洪卫丽
苏航
关键词 SAR与光学影像非下采样轮廓波变换全局特征影像融合超球面色彩空间    
Abstract

Currently, the high-quality fusion of SAR and optical images is a hot research topic. However, the significant radiation difference and weak gray correlation between SAR and optical images greatly reduce the fusion quality. In this regard, this study proposed a SAR and optical remote sensing image fusion algorithm that coupled non-local self-similarity and divergence. First, images were decomposed in the frequency domain. Then, the non-local directional entropy and divergence were used as characteristic parameters to guide the fusion of low- and high-frequency components, respectively. Finally, the fusion components were reconstructed to obtain fusion images with clear structural features and rich spectral information. The comparative experiments verified the effectiveness of the proposed algorithm in fusing SAR with optical images and its superiority in maintaining structural features and reducing spectral distortion.

Key wordsSAR and optical image    non-subsampled contourlet transform    global feature    image fusion    hyper-spherical color space
收稿日期: 2021-11-30      出版日期: 2023-03-20
ZTFLH:  TP751  
基金资助:国家自然科学基金项目“基于高分辨率卫星影像的彩钢板建筑与城市空间结构演变关系研究”(41761082);国家自然科学基金项目“西北重点城市彩钢板建筑群与产业园区时空关联关系”(42161069);国家自然科学基金项目“基于脉冲耦合神经网络的高光谱遥感图像融合方法研究”(41861055);及兰州交通大学优秀平台项目(201806)
通讯作者: 杨树文(1975-),男,博士,教授,博士生导师,主要从事遥感数字图像处理和遥感信息识别及提取方面的研究。Email: ysw040966@163.com
作者简介: 付昱凯(1996-),男,硕士研究生,主要研究方向为遥感图像处理与分析。Email: 736173353@qq.com
引用本文:   
付昱凯, 杨树文, 闫恒, 薛庆, 洪卫丽, 苏航. 耦合非局部自相似性与散度的SAR与光学影像融合[J]. 自然资源遥感, 2023, 35(1): 99-106.
FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence. Remote Sensing for Natural Resources, 2023, 35(1): 99-106.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021411      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/99
Fig.1  NSCT分解示意图
Fig.2  本文融合算法流程结构图
实验 区域 场景 影像类型 尺寸
(像素×像素)
分辨
率/m
实验1 海南
万宁市
农田 机载影像(SAR) 378×404 0.25
谷歌影像(3通道) 192×205 0.5
实验2 河南
郑州市
城市 高分三号 (SAR) 1 159×1 211 3
高分一号 (多光谱) 435×454 8
实验3 新疆
伊犁市
山地+湖泊 哨兵一号 (SAR) 875×1 576 20
Landsat8(假
彩色3通道)
583×1 051 30
Tab.1  实验数据信息
Fig.3  实验一融合结果
Fig.4  实验二融合结果
Fig.5  实验三融合结果
实验
融合方法 SSIM SAM
(°)↓
DD
10-2)↓
RMSE ERGAS
(10-2)↓


IHS 0.989 5 0.635 4 14.233 8 26.991 0 8.979 4
PCA 0.449 9 0.003 5 5.940 5 13.701 5 7.862 4
HCS 0.908 3 0.668 6 13.239 6 25.321 2 8.415 0
Wavelet-IHS 0.682 0 0.188 3 7.098 1 13.507 7 4.489 4
平均NSCT 0.480 0 0.162 8 1.646 1 5.223 0 1.749 3
NSCT平均 0.628 9 0.056 3 3.913 0 7.648 6 2.585 0
本文算法 0.729 8 0.041 1 1.457 1 3.532 9 1.238 4


IHS 0.973 3 1.054 0 21.344 4 47.639 7 15.477 8
PCA 0.400 8 0.050 5 19.038 5 42.555 9 25.060 3
HCS 0.968 8 1.027 9 21.305 0 47.618 7 15.488 6
Wavelet-IHS 0.526 4 0.289 2 10.682 4 23.854 3 6.862 1
平均NSCT 0.352 7 0.418 6 8.085 0 25.089 3 7.668 2
NSCT平均 0.472 3 0.368 8 6.997 7 15.800 9 5.061 3
本文算法 0.672 2 0.109 9 1.779 7 3.852 9 1.232 6


IHS 0.998 9 5.732 0 41.886 9 48.666 9 46.672 7
PCA 0.665 3 0.018 2 33.972 9 41.683 4 57.306 0
HCS 0.989 5 5.679 3 42.464 5 49.058 4 47.048 8
Wavelet-IHS 0.617 8 2.415 3 21.682 1 24.993 8 23.970 3
平均NSCT 0.389 6 0.064 7 8.600 4 15.922 6 16.336 1
NSCT平均 0.637 9 0.509 2 13.193 3 19.610 9 19.237 5
本文算法 0.622 9 0.481 0 5.463 6 10.775 7 11.708 9
Tab.2  2组实验客观评价指标
[1] 王梦瑶, 孟祥超, 邵枫, 等. 基于深度学习的SAR辅助下光学遥感图像去云方法[J]. 光学学报, 2021, 41(12):243-251.
Wang M Y, Meng X C, Shao F, et al. SAR-assisted optical remote sensing image cloud removal method based on deep learning[J]. Acta Optica Sinica, 2021, 41(12):243-251.
[2] 李卫国, 蒋楠, 熊世为. 基于ARSIS策略的SAR影像与多光谱遥感小波融合[J]. 农业工程学报, 2012, 28(s1):158-163.
Li W G, Jiang N, Xiong S W. Multi-spectral and SAR wavelet fusion based on ARSIS strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(s1):158-163.
[3] 陈东, 李飚, 沈振康. SAR与可见光图像融合算法的研究[J]. 系统工程与电子技术, 2000(9):5-7,43.
Chen D, Li B, Shen Z K. Research on data fusion algorithm of SAR and optical images[J]. Systems Engineering and Electronics, 2000(9):5-7,43.
[4] 徐赣, 尤红建. 小波的SAR和光学图像融合方法比较研究[J]. 测绘科学, 2008(1):109-112,249.
Xu G, You H J. Comparative study on wavelet-based SAR and optical image fusion methods[J]. Science of Surveying and Mapping, 2008(1):109-112,249.
[5] 李晖晖, 郭雷, 李国新. 基于脊波变换的SAR与可见光图像融合研究[J]. 西北工业大学学报, 2006(4):418-422.
Li H H, Guo L, Li G X. Is Ridgelet transform better than wavelet transform in SAR and optical image fusion[J]. Journal of Northwestern Polytechnical University, 2006(4):418-422.
[6] 高文涛, 汪小钦, 凌飞龙, 等. 基于纹理的雷达与多光谱遥感数据小波融合研究[J]. 中国图象图形学报, 2008(7):1341-1346.
Gao W T, Wang X Q, Ling F L, et al. Fusion algorithm research based on texture for SAR and multispectral images with wavelet transform[J]. Journal of Image and Graphics, 2008(7):1341-1346.
[7] Anandhi D, Valli S. An algorithm for multi-sensor image fusion using maximum a posteriori and nonsubsampled contourlet transform[J]. Computers and Electrical Engineering, 2018, 65(1):139-152.
doi: 10.1016/j.compeleceng.2017.04.002
[8] 易维, 曾湧, 原征. 基于NSCT变换的高分三号SAR与光学图像融合[J]. 光学学报, 2018, 38(11):76-85.
Yi W, Zeng Y, Yuan Z. Fusion of GF-3 SAR and optical images based on the nonsubsampled contourlet transform[J]. Acta Optica Sinica, 2018, 38(11):76-85.
[9] 李小军, 闫浩文, 杨树文, 等. 一种多光谱遥感影像与航拍影像融合算法[J]. 遥感信息, 2019, 34(4):11-15.
Li X J, Yan H W, Yang S W, et al. A fusion algorithm of multispectral remote sensing image and aerial image[J]. Remote Sensing Information, 2019, 34(4):11-15.
[10] Padwick C, Deskevich M, Pacifici F, et al. WorldView-2 pan-sharpening[C]// Proceedings of the ASPRS 2010 Annual Conference,San Diego,CA,USA. 2010, 2630:1-14.
[11] Chong X J. Comparative analysis of different fusion rules for SAR and multispectral image fusion based on NSCT and IHS transform[C]// International Conference on Computer and Computational Sciences(ICCCS),IEEE: 2015,271-274.
[12] Maryam G, Mohammad S H, Habibollah D. Nonsubsampled contourlet transform-based conditional random field for SAR images segmentation[J]. Signal Processing, 2020, 174(9):107623.
doi: 10.1016/j.sigpro.2020.107623
[13] 卜丽静, 赵爽, 张正鹏. NLM与比率图像的多时相SAR图像去噪方法[J]. 遥感信息, 2021, 36(3):17-24.
Pu L J, Zhao S, Zhang Z P. A multi-temporal SAR image denoising method based on NLM and ratio image[J]. Remote Sensing Information, 2021, 36(3):17-24.
[14] 胡学敏, 余进, 邓重阳, 等. 基于时空立方体的人群异常行为检测与定位[J]. 武汉大学学报(信息科学版), 2019, 44(10):1530-1537.
Hu X M, Yu J, Deng C Y, et al. Abnormal crowd behavior detection and location based on spatial-temporal cube[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1530-1537.
[15] Samadhan C, Kulkarni,Priti P.Rege,Pixel level fusion techniques for SAR and optical images:A review[J]. Information Fusion (2020), doi:https://doi.org/10.1016/j.inffus.2020.01.003.
doi: https://doi.org/10.1016/j.inffus.2020.01.003
[16] 郑胜, 田岩, 柳健, 等. 基于散度的不同焦点图像融合方法[J]. 华中科技大学学报(自然科学版), 2007(4):7-10.
Zheng S, Tian Y, Liu J, et al. Divergence-based multifocuses image fusion[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2007(4):7-10.
[17] 尹峰, 孟祥超, 梁鹏. 一种国产高分卫星遥感影像变分融合方法[J]. 国土资源遥感, 2018, 30(2):100-106.doi:10.6046/gtzyyg.2018.02.14.
doi: 10.6046/gtzyyg.2018.02.14
Yin F, Meng X C, Liang P. A variational fusion method for remote sensing images of China’s domestic high-resolution satellites[J]. Remote Sensing for Land and Resources, 2018, 30(2):100-106.doi:10.6046/gtzyyg.2018.02.14.
doi: 10.6046/gtzyyg.2018.02.14
[18] Lichun S, Jonathan L. Fusion of hyperspectral and multispectral images based on a Bayesian nonparametric approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2):1205-1218.
doi: 10.1109/JSTARS.4609443
[19] Zhang Q, Maldague X. An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing[J]. Infrared Physics & Technology, 2016, 74(1):11-20.
[20] Li X J, Yan H W, Xie W Y, et al. An improved pulse-coupled neural network model for pan sharpening[J]. Sensors, 2020, 20(13),2764.
[21] Tu T M, Su S C, Syu H C, et al. A new look at HIS like image fusion methods[J]. Information Fusion, 2001, 2(3):177-186.
doi: 10.1016/S1566-2535(01)00036-7
[22] Psjr C, Sides S C, Anderson J A. Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(3):256-303.
[23] Hong G, Zhang Y, Mercer B. A wavelet and HIS integration method to fuse high resolution sar with moderate resolution multispectral images[J]. Photogrammetric Engineering & Remote Sensing, 2009, 75(10):1213-1223.
[1] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[2] 马瑞琪, 程博, 刘旭楠, 刘岳明, 江威, 杨晨. 基于压缩感知的GF-1遥感影像IHS融合算法[J]. 国土资源遥感, 2017, 29(4): 26-32.
[3] 李成轶, 田淑芳. 基于字典学习的遥感影像超分辨率融合方法[J]. 国土资源遥感, 2017, 29(1): 50-56.
[4] 刘会芬, 杨英宝, 于双, 孔令婷, 章勇. 遥感图像不同融合方法的适应性评价——以ZY-3和Landsat8图像为例[J]. 国土资源遥感, 2014, 26(4): 63-70.
[5] 谢斌, 俞乐, 张登荣. 基于GIS服务链的遥感影像分布式融合处理[J]. 国土资源遥感, 2011, 23(1): 138-142.
[6] 刘建华. 顾及分割效果的QuickBird影像融合方法对比研究[J]. 国土资源遥感, 2010, 22(3): 21-25.
[7] 朱岚巍, 郭华东, 王长林. SAR与光学影像融合在宁陕地区明长城探测中的应用研究[J]. 国土资源遥感, 2008, 20(4): 61-63.
[8] 李宏杰, 戴福初, 许领, 李维朝, 姚鑫. 地质灾害调查中ETM+与SPOT 5 Pan影像融合与评价[J]. 国土资源遥感, 2008, 20(1): 43-45.
[9] 顾海燕, 李海涛, 杨景辉. 基于最小噪声分离变换的遥感影像融合方法[J]. 国土资源遥感, 2007, 19(2): 53-55.
[10] 张志锋, 宫辉力, 赵文吉, 付瑞海. 基于GIS、RS的野鸭湖及周边湿地资源动态变化分形研究[J]. 国土资源遥感, 2004, 16(3): 42-45.
[11] 关泽群, 刘继琳, 崔卫红 . 利用地物的几何属性改进影像分类效果[J]. 国土资源遥感, 2001, 13(1): 31-35,65.
[12] 陈彩芬, 舒宁. SAR影像与TM影像的几种融合处理方法[J]. 国土资源遥感, 1999, 11(4): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发