Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 107-114    DOI: 10.6046/zrzyyg.2021460
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
改进Deeplabv3+的高分辨率遥感影像道路提取模型
赵凌虎1(), 袁希平2,3, 甘淑1,2(), 胡琳1, 丘鸣语1
1.昆明理工大学国土资源工程学院,昆明 650093
2.云南省高校高原山区空间信息测绘技术应用工程研究中心,昆明 650093
3.滇西应用技术大学地球科学与工程学院,大理 671000
An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+
ZHAO Linghu1(), YUAN Xiping2,3, GAN Shu1,2(), HU Lin1, QIU Mingyu1
1. School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Surveying and Mapping Geo-Informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China
3. School of Earth Science and Engineering, West Yunnan University of Applied Sciences, Dali 671000, China
全文: PDF(3897 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对传统的道路提取方法在高分辨率遥感影像中存在提取效果差和提取速度慢的问题,提出了改进Deeplabv3+的高分辨率遥感影像道路提取模型。采用MobileNetv2主干特征提取网络与Dice Loss函数相结合,较好地平衡了高分辨率遥感影像道路提取精度与速度的矛盾,实现较高提取精度的同时减少了模型参数,满足了时效性的要求。基于开源道路提取数据集的实验结果表明: ①该文提出的道路提取模型在高分辨率遥感影像上具有可行性,提取道路的整体精度达到98.71%,具有较高的提取精度; ②在提取道路的速度方面该方法平均帧数达到120.05,模型参数量仅为5.81 M,总体上比原模型更加轻量化,表明该方法满足了时效性的要求。该方法在大幅减少参数量、满足时效性的同时保证了提取的精确度,为提高基于高分辨率影像的道路提取精度和速度提供了一种新的改进思路和方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵凌虎
袁希平
甘淑
胡琳
丘鸣语
关键词 遥感影像道路提取深度学习语义分割DeepLabv3+模型    
Abstract

Aiming at the problems of poor extraction effect and slow extraction speed of traditional road extraction methods in the information extraction of roads from high-resolution remote sensing images, this study proposed a new information extraction model based on improved Deeplabv3+. In the new model, the combination of the MobileNetv2 backbone feature extraction network with the Dice Loss function effectively balanced the contradiction between the precision and speed of road information extraction from high-resolution remote sensing images. As a result, high extraction precision was achieved while meeting timeliness requirements by reducing model parameters. The experimental results based on the open-source road information extraction dataset show that: ① The road information extraction model proposed in this study was feasible for high-resolution remote sensing images, with overall accuracy of up to 98.71%; ② In terms of the information extraction speed, the new model had an average frame number of 120.05 and parameter amount of only 5.81 M. Therefore, the new model was more lightweight lighter than original models, meeting the timeliness requirements. Therefore, the model proposed in this study meets the timeliness requirements by greatly reducing the parameter amount while ensuring high extraction accuracy. This study provides a new philosophy and method for improving the accuracy and speed of road information extraction from high-resolution images.

Key wordsremote sensing image    road information extraction    deep learning    semantic segmentation    Deeplabv3+ model
收稿日期: 2021-12-27      出版日期: 2023-03-20
ZTFLH:  P2  
基金资助:国家自然科学基金项目“滇中星云湖高原湖泊流域聚落空间格局演化研究”(41561083);“东川小江泥石流迹地的多尺度遥感探测试验分析研究”(41861054)
通讯作者: 甘淑(1964-),女,教授,博士生导师,研究方向为摄影测量与遥感技术。Email: gs@kust.edu.cn
作者简介: 赵凌虎(1998-),男,硕士研究生,研究方向为遥感图像处理。Email: 2919404153@qq.com
引用本文:   
赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021460      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/107
Fig.1  本研究流程
Fig.2  Deeplabv3+网络结构
Fig.3  DepSep Conv结构
输入/(像素×
通道数)
模块类型 t c n s
2242×3 Conv2d - 32 1 2
1122×32 Bottleneck 1 16 1 1
1122×16 Bottleneck 6 24 2 2
562×24 Bottleneck 6 32 3 2
282×32 Bottleneck 6 64 4 2
142×64 Bottleneck 6 96 3 1
142×96 Bottleneck 6 160 3 2
72×160 Bottleneck 6 320 1 1
72×320 Conv2d 1×1 - 1 280 1 1
72×1 280 Avgpool 7×7 - - 1 -
1×1×1 280 Conv2d 1×1 - k - -
Tab.1  MobileNetv2结构
Fig.4  瓶颈层示意图
Fig.5  普通卷积与空洞卷积对比
序号 原始图像 标签图 提取结果
1
2
3
Tab.2  改进Deeplabv3+模型提取道路结果
模型 OA/% P/% R/% F1/% 参数
量/M
平均
帧数
PSPNet 96.59 63.59 77.16 69.72 2.38 129.56
U-Net 98.26 82.46 82.33 83.39 24.89 49.71
Deeplabv3+ 98.45 87.00 81.92 84.38 54.71 30.77
改进Deeplabv3+ 98.71 87.49 87.06 87.27 5.81 120.05
Tab.3  不同模型对比结果
模型 区域a 区域b 区域c 区域d
遥感影像
PSPNet
U-Net
Deeplabv3+
改进Deeplabv3+
真实道路
Tab.4  4种道路提取模型结果对比
[1] Herold M, Roberts D. Spectral characteristics of asphalt road aging and deterioration:Implications for remote-sensing applications[J]. Applied Optics, 2005, 44(20):4327-4334.
doi: 10.1364/AO.44.004327
[2] Kass M, Witkin A, Terzopoulos D. Snakes:Active contour models[J]. International Journal of Computer Vision, 1988, 1(4):321-331.
doi: 10.1007/BF00133570
[3] 罗庆洲, 尹球, 匡定波. 光谱与形状特征相结合的道路提取方法研究[J]. 遥感技术与应用, 2007, 22(3):339-344.
Luo Q Z, Yin Q, Kuang D B. Research on extracting road based on its spectral feature and shape feature[J]. Remote Sensing Technolo-gy and Application, 2007, 22(3):339-344.
[4] Ghaziani M, Mohamadi Y, Koku A B, et al. Extraction of unstructured roads from satellite images using binary image segmentation[C]// 2013 21st Signal Processing and Communications Applications Conference (SIU).IEEE, 2013:1-4.
[5] Sirmaçek B, Ünsalan C. Road network extraction using edge detection and spatial voting[C]// 2010 20th International Conference on Pattern Recognition.IEEE, 2010:3113-3116.
[6] 贾建鑫, 孙海彬, 蒋长辉, 等. 多源遥感数据的道路提取技术研究现状及展望[J]. 光学精密工程, 2021, 29(2):430-442.
Jia J X, Sun H B, Jiang C H, et al. Road extraction technology based on multi-source remote sensing data: Review and prospects[J]. Optics and Precision Engineering, 2021, 29(2):430-442.
doi: 10.37188/OPE.20212902.0430
[7] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386
[8] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:770-778.
[9] Mnih V, Hinton G E. Learning to detect roads in high-resolution aerial images[C]// European Conference on Computer Vision.Springer,Berlin,Heidelberg, 2010:210-223.
[10] 叶雪娜. 基于卷积神经网络的遥感图像道路提取研究[D]. 西安: 陕西师范大学, 2017.
Ye X N. Research on remote sensing image road extraction based on convolutional neural network[D]. Xi’an: Shaanxi Normal University, 2017.
[11] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington, DC: IEEE Computer Society, 2015:3431-3440.
[12] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4):357-361.
[13] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the European Conference on Computer Vision, 2018:801-818.
[14] 魏云超, 赵耀. 基于DCNN的图像语义分割综述[J]. 北京交通大学学报, 2016, 40(4):82-91.
Wei Y C, Zhao Y. A review on image semantic segmentation based on DCNN[J]. Journal of Beijing Jiaotong University, 2016, 40(4):82-91.
[15] Sandler M, Howard A, Zhu M, et al. Mobilenetv2:Inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4510-4520.
[16] Mnih V. Machine learning for aerial image labeling[D]. Toronto: University of Toronto, 2013.
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[4] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[5] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[6] 梁茜亚, 王卷乐, 李朋飞, DAVAADORJ Davaasuren. 基于GF-1影像的蒙古高原干旱半干旱地区自然道路提取——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2023, 35(2): 122-131.
[7] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[8] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[9] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[10] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[11] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[12] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[13] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[14] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[15] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发