Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 193-201    DOI: 10.6046/zrzyyg.2022108
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于人工神经网络的西辽河流域根区土壤湿度估算
郭晓萌(), 方秀琴(), 杨露露, 曹煜
河海大学水文水资源学院,南京 211100
Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin
GUO Xiaomeng(), FANG Xiuqin(), YANG Lulu, CAO Yu
College of Hydrology and Water Resources, Hohai University, Nanjing 211100, China
全文: PDF(3779 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤水是衔接大气、地表、土壤和地下的水分转换和循环的核心,土壤湿度是全球气候观测系统的基本气候变量之一,在区域尺度的水分和能量交换中起着重要作用。根区土壤湿度的估算和时空变化特征的获取,对农业产量评估、洪水和干旱预测、水土保持等均具有重要意义。以西辽河流域作为研究区,基于人工神经网络,以遥感表层土壤湿度、累积降水量、累积日最高温、累积日最低温、相对湿度、日照时长、云覆盖度、风速、土壤属性、归一化植被指数、实际蒸散发量等作为解释变量,以站点实测的根区土壤湿度作为目标变量,采用2013—2018年的数据训练模型,估算研究区内2019—2020年每天的根区土壤湿度。结果表明,基于人工神经网络的根区土壤湿度估算值与站点实测根区土壤湿度之间的平均均方根误差为0.056 7 m3/m3,平均相关系数为0.611 7,表明人工神经网络模型能够有效地估算西辽河流域内的根区土壤湿度。研究发现土壤湿度的变化量与降水量密切相关。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭晓萌
方秀琴
杨露露
曹煜
关键词 根区土壤湿度人工神经网络西辽河流域遥感土壤湿度    
Abstract

Soil moisture is the core of water conversion and circulation that connects the atmosphere, surface, soil, and subsurface. As a basic climate variable of the global climate observing system, soil moisture plays a vital role in regional-scale water and energy exchange. The estimation of root zone soil moisture (RZSM) and the analysis of its spatio-temporal variations are of great significance for crop yield assessment, flood and drought prediction, and soil and water conservation. Based on the artificial neural network (ANN), this study estimated the daily RZSM in the Western Liaohe River basin during 2019—2020 with remote sensing image-based surface soil moisture, cumulative precipitation, cumulative daily maximum and minimum temperatures, relative humidity, sunshine duration, cloud coverage, wind speed, soil attributes, normalized difference vegetation index, and actual evapotranspiration as explanatory variables, the in-situ measured RZSM as the target variable, and the 2013—2018 data used for model training. The estimated results show that the average RMSE and average R between the RZSM estimated based on ANN and the in-situ measured RZSM were 0.056 7 m3/m3 and 0.611 7, respectively. Therefore, the ANN can effectively estimate the RZSM in the Western Liaohe River basin. In addition, this study shows that the variation in the soil moisture is closely related to precipitation.

Key wordsroot zone soil moisture    artificial neural network    Western Liaohe River basin    remotely sensed soil moisture
收稿日期: 2022-03-28      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“土壤湿度时空分布对半干旱区水文过程的作用机制研究”(42071040);国家重点研发计划项目“小流域暴雨洪水及灾害风险关键因子辨识量化”(2019YFC1510601)
通讯作者: 方秀琴(1978-),女,教授,主要研究方向为地表参数遥感反演、分布式水文模型及山洪灾害防治。Email: kinkinfang@hhu.edu.cn
作者简介: 郭晓萌(1998-),女,硕士研究生,主要研究方向为地表参数遥感反演、干旱预报预警等。Email: 763664794@qq.com
引用本文:   
郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
GUO Xiaomeng, FANG Xiuqin, YANG Lulu, CAO Yu. Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin. Remote Sensing for Natural Resources, 2023, 35(2): 193-201.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022108      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/193
Fig.1  研究区地理位置、地形和水系图
Fig.2  MLP模型结构示意图
站点名称 R RMSE
巴雅尔吐胡硕 0.735 5 0.051 5
富河 0.696 1 0.030 0
扎鲁特 0.535 8 0.057 7
巴林左 0.614 1 0.041 6
舍伯吐 0.319 7 0.026 0
科左中 0.830 7 0.031 3
巴林右 0.634 3 0.090 3
林西 0.715 1 0.025 4
克什克腾 0.806 5 0.051 2
阿鲁科尔沁 0.841 1 0.037 2
开鲁 0.210 5 0.198 7
通辽 0.438 1 0.084 2
翁牛特 0.597 7 0.021 4
岗子 0.815 3 0.028 9
赤峰 0.330 7 0.033 6
奈曼 0.319 7 0.082 4
敖汉 0.707 2 0.027 7
喀喇沁 0.702 2 0.052 9
八里罕 0.772 6 0.085 7
Tab.1  ANN模拟RZSM与站点实测RZSM之间的RMSER
Fig.3  2019—2020年克什克腾的ANN模拟RZSM与站点实测RZSM时间序列
Fig.4  2019—2020年岗子的ANN模拟RZSM与站点实测RZSM时间序列
Fig.5  2019—2020年敖汉的ANN模拟RZSM与站点实测RZSM时间序列
Fig.6  2019年6月1日西辽河流域根区土壤湿度估算值
Fig.7  2020年6月1日西辽河流域根区土壤湿度估算值
[1] Baldwin D, Manfreda S, Keller K, et al. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous united states[J]. Journal of Hydrology, 2017, 546:393-404.
doi: 10.1016/j.jhydrol.2017.01.020
[2] Lu H, Shi J. Reconstruction and analysis of temporal and spatial variations in surface soil moisture in China using remote sensing[J]. Chinese Science Bulletin, 2012, 57(22):2824-2834.
doi: 10.1007/s11434-012-5011-8
[3] 聂艳, 马泽玥, 周逍峰, 等. 阿克苏河流域土壤湿度反演与监测研究[J]. 生态学报, 2019, 39(14):5138-5148.
Nie Y, Ma Z Y, Zhou X F, et al. Soil moisture retrieval and monitoring in the Aksu River basin[J]. Acta Ecologica Sinica, 2019, 39(14):5138-5148.
[4] 高露, 张圣微, 赵鸿彬, 等. 退化草原土壤理化性质空间异质性及其对土壤水分的影响[J]. 干旱区研究, 2020, 37(3):607-617.
Gao L, Zhang S W, Zhao H B, et al. Spatial heterogeneity of soil physical and chemical properties in degraded grassland and their effect on soil moisture[J]. Arid Zone Research, 2020, 37(3):607-617.
[5] Alfieri L, Claps P, D’odorico P, et al. An analysis of the soil moisture feedback on convective and stratiform precipitation[J]. Journal of Hydrometeorology, 2008, 9(2):280-291.
doi: 10.1175/2007JHM863.1
[6] Sriwongsitanon N, Gao H, Savenije H H G, et al. Comparing the normalized difference infrared index (NDII) with root zone storage in a lumped conceptual model[J]. Hydrology and Earth System Sciences, 2016, 20(8):3361-3377.
doi: 10.5194/hess-20-3361-2016
[7] Shi C, Xie Z, Qian H, et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data[J]. Science China-Earth Sciences, 2011, 54(9):1430-1440.
doi: 10.1007/s11430-010-4160-3
[8] Dumedah G, Coulibaly P. Evolutionary assimilation of streamflow in distributed hydrologic modeling using in-situ soil moisture data[J]. Advances in Water Resources, 2013, 53:231-241.
doi: 10.1016/j.advwatres.2012.07.012
[9] Albergel C, Ruediger C, Pellarin T, et al. From near-surface to root-zone soil moisture using an exponential filter:An assessment of the method based on in-situ observations and model simulations[J]. Hydrology and Earth System Sciences, 2008, 12(6):1323-1337.
doi: 10.5194/hess-12-1323-2008
[10] Ford T W, Harris E, Quiring S M. Estimating root zone soil moisture using near-surface observations from SMOS[J]. Hydrology and Earth System Sciences, 2014, 18(1):139-154.
doi: 10.5194/hess-18-139-2014
[11] Gao X, Zhao X, Zhang B, et al. Estimation of root-zone soil moisture over gullies using an exponential filter[J]. Advances in Water Science, 2014, 25(5):684-694.
[12] Faridani F, Farid A, Ansari H, et al. A modified version of the SMAR model for estimating root-zone soil moisture from time-series of surface soil moisture[J]. Water SA, 2017, 43(3):492-498.
doi: 10.4314/wsa.v43i3.14
[13] Manfreda S, Brocca L, Moramarco T, et al. A physically based approach for the estimation of root-zone soil moisture from surface measurements[J]. Hydrology and Earth System Sciences, 2014, 18(3):1199-1212.
doi: 10.5194/hess-18-1199-2014
[14] Faridani F, Farid A, Ansari H, et al. Estimation of the root-zone soil moisture using passive microwave remote sensing and SMAR model[J]. Journal of Irrigation and Drainage Engineering, 2017, 143(1):1-9.
[15] Kornelsen K C, Coulibaly P. Root-zone soil moisture estimation using data- driven methods[J]. Water Resources Research, 2014, 50(4):2946-2962.
doi: 10.1002/2013WR014127
[16] 吴善玉. 基于神经网络算法的多源遥感联合反演土壤湿度研究[D]. 南京: 南京信息工程大学, 2019.
Wu S Y. Multi-source remote sensing soil moisture retrieval based on neural network algorithm[D]. Nanjing: Nanjing University of Information Science and Technology, 2019.
[17] 杨晓霞, 贾嵩, 张承明, 等. 一种基于神经网络的土壤湿度预测方法[J]. 江苏农业科学, 2018, 46(10):232-236.
Yang X X, Jia S, Zhang C M, et al. A soil moisture prediction algorithm based on artificial neural network[J]. Jiangsu Agricultural Sciences, 2018, 46(10):232-236.
[18] 朱丽亚, 孙爽, 胡克. 西辽河流域植被NPP时空分布特征及其影响因素研究[J]. 广西植物, 2020, 40(11):1563-1574.
Zhu L Y, Sun S, Hu K. Spatiotemporal distribution of vegetation net primary productivity(NPP) and its impact factors in the Xiliaohe basin[J]. Guihaia, 2020, 40(11):1563-1574.
[19] 赵子娟, 范蓓蕾, 王玉庭, 等. 2000—2018年西辽河流域植被覆盖度时空变化特征及影响因素研究[J]. 中国农业资源与区划, 2021, 42(12):75-88.
Zhao Z J, Fan B L, Wang Y T, et al. Analysis on the characteristics of spatial-temporal changes and influencing factors of vagetation coverage in the Xiliao River basin from 2000 to 2018[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(12):75-88.
[20] 宫丽娟, 刘丹, 赵慧颖, 等. 西辽河地区植被气候生产潜力及其对气候变化的响应[J]. 生态环境学报, 2020, 29(5):866-875.
doi: 10.16258/j.cnki.1674-5906.2020.05.002
Gong L J, Liu D, Zhao H Y, et al. Evolution of vegetation climatic potential productivity and its response to climate change in west Liao River basin[J]. Ecology and Environmental Sciences, 2020, 29(5):866-875.
[21] 崔一娇, 朱琳, 赵力娟. 基于面向对象及光谱特征的植被信息提取与分析[J]. 生态学报, 2013, 33(3):867-875.
Cui Y J, Zhu L, Zhao L J. Abstraction and analysis of vegetation information based on object-oriented and spectra features[J]. Acta Ecologica Sinica, 2013, 33(3):867-875.
doi: 10.5846/stxb
[22] 孙小舟, 封志明, 杨艳昭, 等. 西辽河流域近60年来气候变化趋势分析[J]. 干旱区资源与环境, 2009, 23(9):62-66.
Sun X Z, Feng Z M, Yang Y Z, et al. The climate change trend in Xiliao River basin in recent 60 years[J]. Journal of Arid Land Resources and Environment, 2009, 23(9):62-66.
[23] 谢冰绮, 吕海深, 朱永华. 基于遥感土壤湿度反演中尺度流域水储量季节性变化[J]. 中国农村水利水电, 2020,(10):170-175.
Xie B Q, Lyu H S, Zhu Y H. Evaluation of the seasonal water storage changes in medium-scale basins based on remotely-sensed soil moisture retrievals[J]. China Rural Water and Hydropower, 2020,(10):170-175.
[24] Gruber A, Dorigo W A, Crow W, et al. Triple collocation-based merging of satellite soil moisture retrievals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):6780-6792.
doi: 10.1109/TGRS.2017.2734070
[25] Xiao J B, Sun Z X, Yang J, et al. Effect of subsoiling on soil water and crop yield in semi-arid area[J]. Journal of Soil Science, 2011, 42(3):709-714.
[26] Paltineanu C, Septar L, Gavat C, et al. Spatial distribution of apricot roots in a semi-arid environment[J]. Agroforestry Systems, 2016, 90(3):469-478.
doi: 10.1007/s10457-015-9869-8
[27] Liu F, Wu H, Zhao Y, et al. Mapping high resolution national soil information grids of China[J]. Science Bulletin, 2022, 67(3):328-340.
doi: 10.1016/j.scib.2021.10.013 pmid: 36546081
[28] Xyu X C. Spatial and temporal change characteristics and influencing factors of NDVI of vegetation in China[D]. Harbin: Harbin Normal University, 2019.
[29] 荀其蕾, 董乙强, 安沙舟, 等. 基于MOD 09GA数据的新疆草地生长状况遥感监测研究[J]. 草业学报, 2018, 27(4):10-26.
doi: 10.11686/cyxb2017232
Xun Q L, Dong Y Q, An S Z, et al. Monitoring of grassland herbage accumulation by remote sensing MOD 09GA data in Xinjiang[J]. Actapra Aculturae Sinica, 2018, 27(4):10-26.
[30] 张仁平, 冯琦胜, 郭靖, 等. 2000—2012年中国北方草地NDVI和气候因子时空变化[J]. 中国沙漠, 2015, 35(5):1403-1412.
doi: 10.7522/j.issn.1000-694X.2014.00130
Zhang R P, Feng Q S, Guo J, et al. Spatio-temporal changes of NDVI and climate factors of grassland in northern China from 2000 to 2012[J]. Journal of Desert Research, 2015, 35(5):1403-1412.
[31] 杨秀芹, 王国杰, 潘欣, 等. 基于GLEAM遥感模型的中国1980—2011年地表蒸散发时空变化[J]. 农业工程学报, 2015, 31(21):132-141.
Yang X Q, Wang G J, Pan X, et al. Spatio-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on GLEAM data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21):132-141.
[32] Yang X, Wang G, Pan X, et al. Spatio-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on gleam data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21):132-141.
[33] Miralles D G, De Jeu R A M, Gash J H, et al. Magnitude and variability of land evaporation and its components at the global scale[J]. Hydrology and Earth System Sciences, 2011, 15(3):967-981.
doi: 10.5194/hess-15-967-2011
[34] Yang X, Yong B, Ren L, et al. Multi-scale validation of gleam evapotranspiration products over china via chinaflux et measurements[J]. International Journal of Remote Sensing, 2017, 38(20):5688-5709.
doi: 10.1080/01431161.2017.1346400
[35] Abrahart R J, Anctil F, Coulibaly P, et al. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting[J]. Progress in Physical Geography-Earth and Environment, 2012, 36(4):480-513.
doi: 10.1177/0309133312444943
[36] Taver V, Johannet A, Borrell-Estupina V, et al. Feed-forward vs recurrent neural network models for non-stationarity modelling using data assimilation and adaptivity[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2015, 60(7-8):1242-1265.
doi: 10.1080/02626667.2014.967696
[37] Shoaib M, Shamseldin A Y, Melville B W, et al. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction[J]. Journal of Hydrology, 2016, 535:211-225.
doi: 10.1016/j.jhydrol.2016.01.076
[38] 王青青, 张珂, 叶金印, 等. 安徽省土壤湿度时空变化规律分析及遥感反演[J]. 河海大学学报(自然科学版), 2019, 47(2):114-118.
Wang Q Q, Zhang K, Ye J Y, et al. Spatiotemporal analysis and remote sensing retrieval of soil moisture across Anhui Province,China[J]. Journal of Hohai University(Natural Sciences), 2019, 47(2):114-118.
[39] Golden R M. Neural networks:A comprehensive foundation-Haykin,S[J]. Journal of Mathematical Psychology, 1997, 41(3):287-292.
doi: 10.1006/jmps.1997.1164
[40] Hagan M T, Demuth H B, Beale M H. Neural network design[M]. Boston, PWS Publishing, 1996.
[41] Yonaba H, Anctil F, Fortin V. Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting[J]. Journal of Hydrologic Engineering, 2010, 15(4):275-283.
doi: 10.1061/(ASCE)HE.1943-5584.0000188
[42] Basara J B, Crawford K C. Linear relationships between root-zone soil moisture and atmospheric processes in the planetary boundary layer[J]. Journal of Geophysical Research-Atmospheres, 2002, 107(D15):
[43] Entekhabi D, Njoku E G, O’Neill P E, et al. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5):704-716.
doi: 10.1109/JPROC.2010.2043918
[44] Elshorbagy A, El-Baroudy I. Investigating the capabilities of evolutionary data-driven techniques using the challenging estimation of soil moisture content[J]. Journal of Hydroinformatics, 2009, 11(3-4):237-251.
doi: 10.2166/hydro.2009.032
[45] Elshorbagy A, Parasuraman K. On the relevance of using artificial neural networks for estimating soil moisture content[J]. Journal of Hydrology, 2008, 362(1-2):1-18.
doi: 10.1016/j.jhydrol.2008.08.012
[46] Jiang H L, Cotton W R. Soil moisture estimation using an artificial neural network:A feasibility study[J]. Canadian Journal of Remote Sensing, 2004, 30(5):827-839.
doi: 10.5589/m04-041
[47] Pan X, Kornelsen K C, Coulibaly P. Estimating root zone soil moisture at continental scale using neural networks[J]. Journal of the American Water Resources Association, 2017, 53(1):220-237.
doi: 10.1111/jawr.2017.53.issue-1
[1] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[2] 朱金山, 梁士英, 苏循波. 用人工神经网络方法反演水体吸收系数[J]. 国土资源遥感, 2012, 24(3): 6-10.
[3] 张重, 沈晓华, 邹乐君, 吴文渊, 苏楠, 孔凡立.
滑坡危险性评价模型中的量化方式研究——以永嘉县为例
[J]. 国土资源遥感, 2010, 22(3): 16-20.
[4] 何勇强, 姚国清. 用于成像光谱数据特征矿物识别的人工神经网络结构研究[J]. 国土资源遥感, 2004, 16(3): 23-27.
[5] 江东, 王建华. 人工神经网络在遥感中的应用与发展[J]. 国土资源遥感, 1999, 11(2): 12-18.
[6] 张宝光. 人工神经网络在遥感数字图像分类处理中的应用[J]. 国土资源遥感, 1998, 10(1): 21-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发