Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 10-16    DOI: 10.6046/zrzyyg.2022425
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
Re-YOLOX: 利用Resizer改进的YOLOX近岸海域监测目标识别模型
王振华1,2(), 谭智联1,2, 李静1,2, 常英立1()
1.上海海洋大学信息学院,上海 201306
2.自然资源部海洋环境探测技术与应用重点实验室,广州 510000
Re-YOLOX: A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model
WANG Zhenhua1,2(), TAN Zhilian1,2, LI Jing1,2, CHANG Yingli1()
1. College of Information Technology,Shanghai Ocean University,Shanghai 201306,China
2. Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources,Guangzhou 510000,China
全文: PDF(3278 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

近岸海域监测包括自然环境监测和人类活动监测,其监测目标的高精准识别对海洋经济的健康发展、海洋环境的生态保护以及海洋防灾减灾等都有重要的作用。近岸海域监测目标具有多类型、多尺寸和不确定性等特征,现有识别模型在对近岸海域监测目标识别时,存在精度和效率欠佳、小目标漏检现象严重等问题。针对上述问题,利用可学习的图像调整模型(Resizer model)改进YOLOX,提出了面向近岸海域监测目标的识别模型(Re-YOLOX),包括: ①利用Resizer model加强模型训练,提升模型的特征学习能力和表达能力,提高模型的召回率; ②改进YOLOX的特征金字塔融合结构,减少小目标识别的漏检问题。用无人机监测的近岸海域视频数据作数据集,以车辆、船只和堆砌物为监测目标,将提出的Re-YOLOX模型与CenterNet,Faster R-CNN,YOLOv3和YOLOX等模型进行比较。结果表明,Re-YOLOX模型的平均预测精准率mAP可达94.23%,平均召回率mR可达91.99%,平均F1值mF1可达89.67%,均高于对比模型。综上所述,文章提出Re-YOLOX在保证目标识别效率的前提下提高了目标识别的精度,可为近岸海域管理提供技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振华
谭智联
李静
常英立
关键词 近岸海域目标识别YOLOX算法无人机监测数据    
Abstract

Nearshore monitoring covers natural environments and human activities. High-accuracy identification of nearshore monitoring targets significantly influences the healthy development of the marine economy, the ecological protection of marine environments, and the prevention and mitigation of marine disasters. The nearshore monitoring targets feature multiple types, diverse sizes, and uncertainty. The existing identification models suffer low accuracy, low efficiency, and severe omission of small targets. This study proposed an identification model (Re-YOLOX) for nearshore monitoring targets by improving YOLOX using a learnable image resizer model (the Resizer model). First, the model training was intensified using the Resizer model to improve the feature learning and expression abilities and the recall rate of the Re-YOLOX model. Then, the feature pyramid fusion structure of the YOLOX algorithm was improved to reduce the omission of small targets in the identification. With the nearshore video data from UAV monitoring as the data set and cars, ships, and piles as monitoring targets, this study compared the Re-YOLOX model with other models, including CenterNet, Faster R-CNN, YOLOv3, and YOLOX. The results show that the Re-YOLOX model yielded a mean average precision of 94.23%, a mean recall of 91.99%, and a mean F1 score of 89.67%, all of which were higher than those of the other models. In summary, the Re-YOLOX model can improve the target identification accuracy while ensuring target identification efficiency, thus providing technical support for managing nearshore seas.

Key wordsnearshore sea    target identification    YOLOX algorithm    UAV monitoring data
收稿日期: 2022-11-02      出版日期: 2023-09-19
ZTFLH:  TP79  
  TP183  
基金资助:自然资源部海洋环境探测技术与应用重点实验室开放基金项目“基于深度学习的海岛与海岸带典型要素智能监测关键技术研究与试点应用”(MESTA-2021-B007);上海市地方院校能力建设项目“复杂潮汐环境影响下海岛(礁)地物信息提取与精度验证方法及其示范应用”(19050502100)
通讯作者: 常英立(1977-),女,博士,副教授,研究方向为图像处理。Email: ylchang@shou.edu.cn
作者简介: 王振华(1982-),女,博士,教授,研究方向为海洋大数据处理及分析。Email: zh-wang@shou.edu.cn
引用本文:   
王振华, 谭智联, 李静, 常英立. Re-YOLOX: 利用Resizer改进的YOLOX近岸海域监测目标识别模型[J]. 自然资源遥感, 2023, 35(3): 10-16.
WANG Zhenhua, TAN Zhilian, LI Jing, CHANG Yingli. Re-YOLOX: A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model. Remote Sensing for Natural Resources, 2023, 35(3): 10-16.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022425      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/10
Fig.1  近岸海域监测目标识别模型(Re-YOLOX)结构框架
Fig.2  近岸海域监测数据示意图
Fig.3  监测目标尺寸统计
Fig.4  损失函数变化曲线对比
模型 P/% R/% mAP/% mR/% mF1/% FPS/
(张·s-1)
车辆 堆砌物 船只 车辆 堆砌物 船只
YOLOX 94.09 86.58 75.24 83.09 87.16 83.16 89.79 84.47 84.67 16.36
YOLOX+resizer 88.69 88.27 79.56 89.87 88.23 88.10 91.93 88.73 87.04 15.44
YOLOX+add 89.65 89.49 80.34 90.32 91.03 89.13 93.28 90.16 88.24 14.32
Re-YOLOX 88.91 92.00 81.31 91.16 93.24 91.58 94.23 91.99 89.67 13.91
Tab.1  消融实验测试结果
图像序号 标签 CenterNet Faster R-CNN YOLOv3 Re-YOLOX
a
b
c
d
Tab.2  不同模型的目标识别结果
模型 P/% R/% mAP/% mR/% mF1/% FPS/
(张·s-1)
车辆 堆砌物 船只 车辆 堆砌物 船只
CenterNet 95.38 97.56 96.72 51.07 54.05 62.11 80.48 55.74 71.00 14.38
Faster R-CNN 46.42 74.84 77.00 36.35 78.38 81.05 59.02 65.26 65.67 7.41
YOLOv3 77.38 73.87 73.63 72.71 61.19 52.34 68.28 58.04 67.67 21.44
Re-YOLOX 88.91 92.00 81.31 91.16 93.24 91.58 94.23 91.99 89.67 13.91
Tab.3  不同模型的评价指标
[1] 何荣, 石海明, 屠建波, 等. 海洋工程对天津近岸海域环境的影响研究[J]. 海洋开发与管理, 2019, 36(5):63-66.
He R, Shi H M, Tu J B, et al. The influence of ocean engineering in the coastal area of Tianjin[J]. Ocean Development and Management, 2019, 36(5):63-66.
[2] 周扬. 基于深度学习的目标跟踪算法研究[D]. 扬州: 扬州大学, 2019.
Zhou Y. Research on target tracking algorithm based on deep learning[D]. Yangzhou: Yangzhou University, 2019.
[3] 范航恺. 基于卷积神经网络的序列特异性预测研究[D]. 昆明: 云南大学, 2016.
Fan H K. Prediction of sequence specificity based on convolutional neural network[D]. Kunming: Yunnan University, 2016.
[4] LeCun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791
[5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,OH,USA, 2014:580-587.
[6] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Las Vegas,NV,USA, 2016:779-788.
[7] 关克平, 韩笑, 蒋宇. 基于tbd策略的船舶交通流视觉图像统计方法[J]. 上海海事大学学报, 2021, 42(2): 40-44,95.
Guan K P, Han X, Jiang Y. Visual image statistics method of ship traffic flow based on tbd strategy[J]. Journal of Shanghai Maritime University, 2021, 42(2): 40-44,95.
[8] 许延雷, 梁继然, 董国军, 等. 基于改进CenterNet的航拍图像目标检测算法[J]. 激光与光电子学进展, 2021, 58(20): 192-201.
Xu Y L, Liang J R, Dong G J, et al. Target detection algorithm for aerial images based on improved CenterNet[J]. Laser and Optoelectronics Progress, 2021, 58(20): 192-201.
[9] 岳邦铮, 韩松. 基于改进 Faster R-CNN 的 SAR 船舶目标检测方法[J]. 计算机与现代化, 2019, 7(9):90-95.
Yue B Z, Han S. A SAR ship detection method based on improved Faster R-CNN[J]. Computer and Modernization, 2019, 7(9):90-95.
[10] 聂鑫, 刘文, 吴巍. 复杂场景下基于增强YOLOv3的船舶目标检测[J]. 计算机应用, 2020, 40(9): 2561-2570.
doi: 10.11772/j.issn.1001-9081.2020010097
Nie X, Liu W, Wu W. Ship target detection based on enhanced YOLOv3 in complex scenes[J]. Journal of Computer Applications, 2020, 40(9): 2561-2570.
[11] 齐亮, 李邦昱, 陈连凯. 基于改进的Faster R-CNN船舶目标检测算法[J]. 中国造船, 2020, 61(s1): 40-51.
Qi L, Li B Y, Chen L K. Ship target detection algorithm based on improved Fast R-CNN[J]. Shipbuilding of China, 2020, 61(s1):40-51.
[12] 盛明伟, 李俊, 秦洪德, 等. 基于改进YOLOv3的船舶目标检测算法[J]. 导航与控制, 2021, 20(2):95-109.
Sheng M W, Li J, Qin H D, et al. Ship target detection algorithm based on improved YOLOv3[J]. Navigation and Control, 2021, 20(2):95-109.
[13] Talebi H, Milanfar P. Learning to resize images for computer vision tasks[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV),Montreal,QC,Canada, 2021:487-496.
[14] Ge Z, Liu S, Wang F, et al. YOLOX:Exceeding YOLO series in 2021[EB/OL].[2021-08-06]. https://arxiv.org/abs/2107.08430.
[15] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]// in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[16] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convo-lutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
doi: 10.1109/TPAMI.2015.2389824
[17] 刘鑫, 陈思溢, 陈小龙, 等. 基于深度学习的深层次多尺度特征融合目标检测算法[J]. 激光与光电子学进展, 2021, 58(12): 304-312.
Liu X, Chen S Y, Chen X L, et al. Deep multi-scale feature fusion target detection algorithm based on deep learning[J]. Laser and Optoelectronics Progress, 2021, 58(12): 304-312.
[18] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4,inception-resnet and the impact of residual connections on learning[C]// Thirty-first AAAI Conference on Artificial Intelligence, 2017:4278-4284.
[19] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO:Common objects in context[C]// Proceedings of the European Conference on Computer Vision, 2014:740-755.
[20] 陈朋弟, 黄亮, 夏炎, 等. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4): 61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
Chen P D, Huang L, Xia Y, et al. Detection and recognition of road traffic signs in UAV images based on Mask R-CNN[J]. Remote Sensing for Land and Resources, 2020, 32(4): 61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
[1] 周光宇, 刘邦权, 张亶. 基于变分模态分解的SAR图像目标识别方法[J]. 国土资源遥感, 2020, 32(2): 33-39.
[2] 金永涛, 杨秀峰, 高涛, 郭会敏, 刘世盟. 基于面向对象与深度学习的典型地物提取[J]. 国土资源遥感, 2018, 30(1): 22-29.
[3] 侯云峰, 阳丰俊, 杨效余, 王玉璞. 基于形态学重构运算的地面目标识别算法[J]. 国土资源遥感, 2012, 24(3): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发