Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 13-27    DOI: 10.6046/zrzyyg.2023065
  综述 本期目录 | 过刊浏览 | 高级检索 |
积雪遥感监测产品研究与应用进展
孙禧勇1,2(), 刘稼丰1, 范景辉1(), 张文凯1, 石利娟3, 邱玉宝3, 朱发容4
1.中国自然资源航空物探遥感中心,北京 100083
2.中国地质大学(武汉)地理与信息工程学院,武汉 430074
3.中国科学院空天信息创新研究院,北京 100094
4.中国地质大学(北京)土地科学技术学院,北京 100083
Advances in research and application of remote sensing-based snow monitoring products
SUN Xiyong1,2(), LIU Jiafeng1, FAN Jinghui1(), ZHANG Wenkai1, SHI Lijuan3, QIU Yubao3, ZHU Farong4
1. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources,Beijing 100083,China
2. School of Geography and Information Engineering,China University of Geoscience(Wuhan),Wuhan 430074, China
3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094,China
4. School of Land Science and Technology,China University of Geoscience(Beijing),Beijing 100083, China
全文: PDF(1281 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

积雪是表征地表冰冻圈的重要因子,也是重要的天气、水文现象的参数。借助遥感技术对积雪形态及变化进行长时序、大范围监测,在全球气候变化研究、水文水资源调查和地质灾害预防等领域有重要作用。经过数十年的发展,国内外积雪遥感监测技术领域取得了很大进展,积雪遥感监测产品种类不断丰富,积雪反演的算法也在不断改进。文章对现有应用比较广泛的积雪产品按照积雪范围产品、积雪覆盖率产品和雪深/雪水当量产品3类进行归纳总结,梳理当前典型积雪范围及覆盖率产品和雪深/雪水当量产品的业务化遥感反演算法。文章指出,随着国内外高时间和空间分辨率传感器的不断出现,在光学和微波新数据源、新技术支持下,研究人员逐渐针对区域特点优化积雪反演算法,使得反演精度不断提高,为未来积雪遥感监测产品的不断改进提供更多支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙禧勇
刘稼丰
范景辉
张文凯
石利娟
邱玉宝
朱发容
关键词 积雪遥感监测产品积雪覆盖雪水当量积雪反演算法    
Abstract

Snow proves to be both an important factor in characterizing the surface cryosphere and a critical parameter for weather and hydrological phenomena. Employing remote sensing to conduct long-term and large-scale monitoring of snow morphologies and their changes plays a vital role in research into global climate change, investigations into hydrology and water resources, and geological disaster prevention. After decades of development, significant progress has been made in the field of remote sensing-based snow monitoring technology both in China and abroad. Accordingly, the products for remote sensing-based snow monitoring have become increasingly abundant, and the snow-orientated inversion algorithms have been continuously improved. This paper provides a summary of the existing, widely applied products after categorizing them into three types: snow-cover extent (SEC), snow coverage, and snow depth/snow water equivalent (SWE) products. Furthermore, this study organizes the commercialized remote sensing inversion algorithms used in existing, typical SEC and SWE products. The review of advances in the relevant scientific research reveals that, with the constant presence of sensors with high temporal and spatial resolutions in China and abroad and the support of both novel optical and microwave data sources and new technologies, researchers have gradually improved the accuracy of snow-orientated inversion algorithms by optimizing these algorithms based on regional characteristics. This will provide more support for continuously improving remote sensing-based snow monitoring products in the future.

Key wordsremote sensing-based snow monitoring product    snow cover    SWE    snow-orientated inversion algorithm
收稿日期: 2023-03-15      出版日期: 2024-09-03
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“高亚洲和北极积雪—冰川与地质灾害监测技术及示范应用”(2021YFE0116800)
通讯作者: 范景辉(1978-),男,博士,正高级工程师,主要从事环境遥感研究。Email: fanjinghui@mail.cgs.gov.cn
作者简介: 孙禧勇(1984-),男,博士研究生,正高级工程师,主要从事自然资源遥感研究。Email: sunxiyong@mail.cgs.gov.cn
引用本文:   
孙禧勇, 刘稼丰, 范景辉, 张文凯, 石利娟, 邱玉宝, 朱发容. 积雪遥感监测产品研究与应用进展[J]. 自然资源遥感, 2024, 36(3): 13-27.
SUN Xiyong, LIU Jiafeng, FAN Jinghui, ZHANG Wenkai, SHI Lijuan, QIU Yubao, ZHU Farong. Advances in research and application of remote sensing-based snow monitoring products. Remote Sensing for Natural Resources, 2024, 36(3): 13-27.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023065      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/13
传感器名称 传感器类型 波长(频率) 空间分辨率/km 观测幅度/km 搭载卫星
TM 光学传感器 0.45~0.52 μm 185 Landsat5
(1984—2011年)
美国
0.52~0.60 μm
0.63~0.69 μm
0.03
0.75~0.90 μm
1.55~1.75 μm
2.08~2.35 μm
10.40~12.50 μm 0.12
ETM+ 光学传感器 0.52~0.90 μm 0.015 185 Landsat7
(1999年至今)
美国
0.45~0.52 μm
0.525~0.605 μm
0.63~0.69 μm 0.03
0.75~0.90 μm
1.55~1.75 μm
2.09~2.35 μm
10.40~12.50 μm 0.06
OLI 光学传感器 0.433~0.453 μm 185 Landsat8
(2013年至今)
美国
0.450~0.515 μm
0.525~0.600 μm
0.630~0.680 μm 0.03
0.845~0.885 μm
1.560~1.660 μm
2.100~2.300 μm
1.360~1.390 μm
0.500~0.680 μm 0.015
MODIS 光学传感器 0.620~0.876 μm 0.25 2 330 EOS Terra
(1999年至今)
美国/日本/加拿大
0.459~2.155 μm 0.5
0.405~0.877 μm 1
0.890~0.965 μm 1
3.660~14.385 μm 1
NOAA/AVHRR 光学传感器 0.58~0.68 μm 1.09 2 800 TIROS-N
(1979年至今)
美国
0.725~1.00 μm
1.58~1.64 μm
3.55~3.93 μm
10.30~11.30 μm
11.50~12.50 μm
MODIS 光学传感器 0.620~0.876 μm 0.25 2 330 EOS Aqua
(2001年至今)
美国
0.459~2.155 μm 0.5
0.405~0.877 μm 1
0.890~0.965 μm 1
3.660~14.385 μm 1
AMSR-E 被动微波传感器 6.925 GHz 1 445 EOS Aqua
(2001年至今)
美国
10.65 GHz 10
18.7 GHz
23.8 GHz
36.5 GHz 5
89.0 GHz
SMMR 被动微波传感 6.33 GHz
10.69 GHz
18.00 GHz
21.00 GHz
37.00 GHz
96×153
59×91
41×55
30×46
18×27
地平线
|
地平线
NIMBUS-7
MWRI 被动微波传感器 10.65 GHz
18.70 GHz
23.80 GHz
36.50 GHz
89.00 GHz
85×51
50×30
45×27
30×18
15×9
1 400 FY-3B/3C/3D
(2008年至今/2010年
至今/2013年至今)
中国
SMM/I 被动微波传感器 19.30 GHz
22.20 V
37.00 GHz
85.50 GHz
70×45
60×40
38×30
16×14

1 394
DMSP-F8/ F11/ F13
(1987—1991年/1991—
2000年/1995—2009年)
美国
SSMIS 被动微波传感器 19.30 GHz
22.20 V
37.00 GHz
85.50 GHz
70×45
60×40
38×30
16×13
1 700 DMSP-F17
(2006—2017年)
美国
DMSP-F18
(2009年至今)
美国
Sentinel-1A 主动微波传感器 C波段: 5.405 GHz 0.025 >80 Sentinel
(2014—2016年)
欧洲太空局
0.1 >250
Sentinel-1B 1 >400
0.025 400
Tab.1  积雪遥感常用传感器
产品 覆盖范围 空间
分辨率/km
时间
分辨率/d
时间范围 传感器 来源
NOAA IMS 全球 1 1 2014年至今 NOAA,
AVHRR,MODIS,ASCAT
美国国家海洋和大气管理局
http://www.natice.noaa.gov/ims/
4 2004年至今
24 1997—2004年
CryoClim 全球 5 1 1982年至今 AVHRR,SMMR/SSMI 挪威航天中心,欧洲航天局
http://www.cryoclim.net/cryoclim/subsites/data_portal/
MDS10C
GHRM5C
全球 5 1 1979—2013年 MODIS,AVHRR 日本宇航局
http://kuroshio.eorc.jaxa.jp/JASMES/index.html
MEaSUREs 北半球 25 1 1999—2012年 MODIS,AVHRR,AMS-
R-E,
VIIRS,SSMI
NSIDC
ftp://sidads.colorado.edu/pub/DATASETS/nsidc0530_MEASURES_nhsnow_daily25/
青藏高原MODIS逐日无云积雪产品 青藏高原 0.5 1 2002—2010年 MODIS 国家青藏高原科学数据中心
http://data.tpdc.ac.cn
青藏高原MODIS逐日无云积雪面积数据集 青藏高原 0.5 1 2002—2015年 MODIS 中国科学院空天信息创新研究院
https://www.scidb.cn/en/detail?dataSetId=533223505102110720
青藏高原逐日无云积雪数据集 青藏高原 0.5 1 2002—2021年 MODIS 国家青藏高原科学数据中心
http://data.tpdc.ac.cn
FY-1&AVHRR积雪范围产品 全球 5 10 1996—2010年 MVISR,AVHRR 中国气象局
http://satellite.cma.gov.cn
Daily cloud-free snow cover products for Tibetan Plateau from 2002 to 2021 Qinghai-Tibetan
Plateau
0.5 1 2002— 2021年 MODIS https://doi.org/10.11888/Cryos.tpdc.272204
Tab.2  主要的积雪范围产品
数据产品名称 覆盖范围 时间范围 空间分辨率 时间分辨率 传感器 来源
GlobSnow v2.1 北半球 1996—2012年 0.01°×0.01° 逐日/8 d ATSR-2,AATSR 欧洲航天局
http://www.globsnow.info
SCAG 北半球 2000—2013年 500 m 逐日 MODIS,VIRRS NASA
http://snow.jpl.nasa.gov/portal/browse/dataset/urn:snow: MODSCAG
CryoLand 泛欧亚 2000年至今 500 m 逐日 MODIS 欧洲航天局
http://cryoland.eu
Terra积雪产品
(MOD10A1/A2)
全球 2000年至今 500 m/0.05° 逐日/8 d MODIS NSIDC
https://nsidc.org
Aqua积雪产品
(MYD10A1/A2)
全球 2002年至今 500 m/0.05° 逐日/8 d MODIS NSIDC
https://nsidc.org
高亚洲逐日积雪
覆盖度数据集
亚洲 2002—2018年 500 m 逐日 MODIS 中国科学院空天信息创新研究院
https://www.scidb.cn/en/detail?dataSetId=633694460970008576
全球年均积雪面
积比例数据
全球 2000—2021年 500 m 逐年 MODIS 国家青藏高原科学数据中心
http://data.tpdc.ac.cn
Tab.3  主要积雪覆盖率产品
数据产品 空间范围 时间范围 空间分辨率 时间分辨率 数据源
SMMR积雪雪深产品 全球 1978—1987年 0.5° 逐月 NSIDC
https://nsidc.org
SSM/I雪深产品 全球 1987年至今 25 km 逐日 NSIDC
https://nsidc.org
SSMI/S雪深产品 全球 2003年至今 25 km 逐日 NSIDC
https://nsidc.org
GlobSnow
雪水当量产品
北半球 1979年至今 25 km 逐日/周/月 欧洲航天局
http://www.globsnow.info
AMSR-E雪水当量产品 全球 2002—2011年 25 km 逐日/5 d/月 NASA
http://nsidc.org/data/docs/daac/ae_swe_ease-grids.gd.html
AMSR-2雪水当量/雪深产品 全球 2015年至今 10 km/25 km/Swath 逐日 日本宇航局
https://suzaku.eorc.jaxa.jp/
FY-3B/C雪深/雪水当量产品 全球 2011/2014年至今 25 km 逐日/旬/月 中国气象局
http://satellite.cma.gov.cn
中国雪深长时间序列数据集(1979—2016年) 中国 1979—2016年 0.25° 逐日 国家青藏高原科学数据中心
https://data.tpdc.ac.cn/zh-hans/
高亚洲地区被动微波遥感雪水当量数据集 亚洲 2002—2011年 0.25°/500 m 逐日/周/月 中国科学院空天信息创新研究院
https://www.scidb.cn/en/detail?dataSetId=633694461121003524
2003—2011年
Tab.4  典型的雪深/雪水当量产品
[1] Estilow T W, Young A H, Robinson D A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring[J]. Earth System Science Data, 2015, 7(1):137-142.
[2] 沙依然·外力, 毛炜峄. 基于AMSR2被动微波积雪参量高精度反演方法研究[J]. 冰川冻土, 2016, 38(1):145-158.
Sayran W, Mao W Y. A research on the method of deriving high-precision snow parameters from AMSR2 passive microwave remote sensing data[J]. Journal of Glaciology and Geocryology, 2016, 38(1):145-158.
[3] 王芝兰, 张飞民, 王澄海, 等. 1980—2019年青藏高原积雪深度时空差异性分析[J]. 冰川冻土, 2022, 44(3):810-821.
doi: 10.7522/j.issn.1000-0240.2022.0079
Wang Z L, Zhang F M, Wang C H, et al. Analysis on spatial and temporal difference of snow depth over the Tibetan Plateau from 1980 to 2019[J]. Journal of Glaciology and Geocryology, 2022, 44(3):810-821.
doi: 10.7522/j.issn.1000-0240.2022.0079
[4] 王顺久. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 2017, 36(5):1153-1164.
doi: 10.7522/j.issn.1000-0534.2016.00117
Wang S J. Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteorology, 2017, 36(5):1153-1164.
doi: 10.7522/j.issn.1000-0534.2016.00117
[5] 刘一静, 孙燕华, 钟歆玥, 等. 从第三极到北极:积雪变化研究进展[J]. 冰川冻土, 2020, 42(1):140-156.
doi: 10.7522/j.issn.1000-0240.2020.0007
Liu Y J, Sun Y H, Zhong X Y, et al. Changes of snow cover in the Third Pole and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1):140-156.
doi: 10.7522/j.issn.1000-0240.2020.0007
[6] 王泽坤, 甘甫平, 闫柏琨, 等. 雪深和雪水当量被动微波反演及应用进展[J]. 自然资源遥感, 2022, 34(3):1-9.doi:10.6046/zrzyyg.2021322.
Wang Z K, Gan F P, Yan B K, et al. Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress[J]. Remote Sensing for Natural Resources, 2022, 34(3):1-9.doi:10.6046/zrzyyg.2021322.
[7] 蒋玲梅, 崔慧珍, 王功雪, 等. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6):1237-1262.
doi: 10.11873/j.issn.1004-0323.2020.6.1237
Jiang L M, Cui H Z, Wang G X, et al. Progress on remote sensing of snow,surface soil frozen/thaw state and soil moisture[J]. Remote Sensing Technology and Application, 2020, 35(6):1237-1262.
[8] Yang J, Jiang L, Shi J, et al. Monitoring snow cover using Chinese meteorological satellite data over China[J]. Remote Sensing of Environment, 2014, 143:192-203.
[9] Marchane A, Jarlan L, Hanich L, et al. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas Mountain range[J]. Remote Sensing of Environment, 2015, 160:72-86.
[10] 韩琛惠. 新一代静止气象卫星积雪判识算法的改进与应用研究[D]. 南京: 南京信息工程大学, 2018.
Han C H. Improvement and application of snow detection algorithm using the new generation of geostationary meteorological satellite[D]. Nanjing: Nanjing University of Information Science & Technology, 2018.
[11] 曹海啸. 基于深度学习的新疆地区遥感积雪判识研究[D]. 南京: 南京信息工程大学, 2021.
Cao H X. Study on remote sensing snow identification in Xinjiang based on deep learning[D]. Nanjing: Nanjing University of Information Science & Technology, 2021.
[12] 沙依然. 外力. 基于新一代先进卫星遥感AMSR2、VIIRS数据融合积雪监测模型及应用研究[D]. 南京: 南京信息工程大学, 2017.
Sayran W. Study on the snow cover inversion model and its application based on the new generation advanced satellite AMSR2 and VIIRS data fusion[D]. Nanjing: Nanjing University of Information Science & Technology, 2017.
[13] 除多, 郑照军, 拉巴卓玛, 等. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6):1223-1235.
doi: 10.11873/j.issn.1004-0323.2021.6.1223
Chu D, Zheng Z J, Labazhuoma, et al. Accuracy assessment of IMS 4 km snow and ice products on the Tibetan Plateau based on Landsat-8 OLI images[J]. Remote Sensing Technology and Application, 2021, 36(6):1223-1235.
[14] 马光义. 基于高时空分辨率卫星遥感影像的积雪判识算法研究与应用[D]. 南京: 南京信息工程大学, 2020.
Ma G Y. Research and application of snow recognition algorithm using high temporal-spatial resolution remote sensing imageries[D]. Nanjing: Nanjing University of Information Science and Technology. 2020.
[15] 吴杨, 张佳华, 徐海明, 等. 卫星反演积雪信息的研究进展[J]. 气象, 2007, 33(6):3-10.
Wu Y, Zhang J H, Xu H M, et al. Advances in study of snow-cover from remote sensing data[J]. Meteorological Monthly, 2007, 33(6):3-10.
[16] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6):590-605.
doi: 10.11867/j.issn.1001-8166.2018.06.0590
Xiao X X, Zhang T J. Passive microwave remote sensing of snow depth and snow water equivalent:Overview[J]. Advances in Earth Science, 2018, 33(6):590-605.
[17] 李长春, 徐轩, 包安明, 等. 基于FY3B-MWRI数据新疆区域积雪深度反演[J]. 遥感技术与应用, 2018, 33(6):1030-1036.
Li C C, Xu X, Bao A M, et al. The Study on snow depth retrieval in Xinjiang region based on FY3B-MWRI data[J]. Remote Sensing Technology and Application, 2018, 33(6):1030-1036.
[18] 朱淑珍, 黄法融, 冯挺, 等. 1979—2020年天山地区积雪量估算及其特征分析[J]. 冰川冻土, 2022, 44(3):984-997.
doi: 10.7522/j.issn.1000-0240.2022.0093
Zhu S Z, Huang F R, Feng T, et al. Estimation of snow mass and its distribution characteristics from 1979 to 2020 in Tianshan Mountains,China[J]. Journal of Glaciology and Geocryology,2022, 44(3):984-997.
[19] 蒋玲梅, 王培, 张立新, 等. FY3B-MWRI中国区域雪深反演算法改进[J]. 中国科学:地球科学, 2014, 44(3):531-547.
Jiang L M, Wang P, Zhang L X, et al. Improvement of FY3B-MWRI snow depth inversion algorithm in China region[J]. Scientia Sinica (Terrae), 2014, 44(3):531-547.
[20] 王功雪, 蒋玲梅, 武胜利, 等. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用[J]. 遥感技术与应用, 2017, 32(1):49-56.
doi: 10.11873/j.issn.1004-0323.2017.1.0049
Wang G X, Jiang L M, Wu S L, et al. Intercalibrating FY-3B and FY-3C/MWRI for synergistic implementing to snow depth retrieval algorithm[J]. Remote Sensing Technology and Application, 2017, 32(1):49-56.
[21] 李震, 曾群柱. 合成孔径雷达影象提取雪盖信息研究[J]. 环境遥感, 1996(3):200-205.
Li Z, Zeng Q Z. Study on extracting snow cover information from synthetic aperture Radar images[J]. National Remote Sensing Bulletin, 1996(3):200-205.
[22] Dozier J, Marks D. Snow mapping and classification from Landsat thematic mapper data[J]. Annals of Glaciology, 1987, 9:97-103.
[23] Martinec J, Rango A. Interpretation and utilization of areal snow-cover data from satellites[J]. Annals of Glaciology, 1987, 9:166-169.
[24] Dozier J. Spectral signature of alpine snow cover from the Landsat thematic mapper[J]. Remote Sensing of Environment, 1989, 28:9-22.
[25] Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2):127-140.
[26] Hall D K, Foster J L, Verbyla D L, et al. Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska[J]. Remote Sensing of Environment, 1998, 66(2):129-137.
[27] Klein A G, Hall D K, Riggs G A. Improving snow cover mapping in forests through the use of a canopy reflectance model[J]. Hydrological Processes, 1998, 12(1011):1723-1744.
[28] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1/2):181-194.
[29] Salomonson V V, Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment, 2004, 89(3):351-360.
[30] Hori M, Sugiura K, Kobayashi K, et al. A 38-year (1978—2015) northern hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors[J]. Remote Sensing of Environment, 2017, 191:402-418.
[31] Wang X, Wang J. Retrieving snow cover in forests of Qilian Mountains from Landsat optional land imager(OLI)[C]// 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Milan,Italy.IEEE, 2015:751-753.
[32] Wang G, Jiang L, Shi J, et al. Snow-covered area retrieval from Himawari-8 AHI imagery of the Tibetan Plateau[J]. Remote Sensing, 2019, 11(20):2391.
[33] Kwon Y, Yang Z L, Hoar T J, et al. Improving the radiance assimilation performance in estimating snow water storage across snow and land-cover types in North America[J]. Journal of Hydrometeorology, 2017, 18(3):651-668.
[34] Masiokas M H, Villalba R, Luckman B H, et al. Snowpack variations in the central Andes of Argentina and Chile,1951—2005:Large-scale atmospheric influences and implications for water resources in the region[J]. Journal of Climate, 2006, 19(24):6334-6352.
[35] Metsämäki S J, Anttila S T, Markus H J, et al. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model[J]. Remote Sensing of Environment, 2005, 95(1):77-95.
[36] Painter T H, Rittger K, McKenzie C, et al. Retrieval of subpixel snow covered area,grain size,and albedo from MODIS[J]. Remote Sensing of Environment, 2009, 113(4):868-879.
[37] Rittger K, Painter T H, Dozier J. Assessment of methods for mapping snow cover from MODIS[J]. Advances in Water Resources, 2013, 51:367-380.
[38] 施建成. MODIS亚像元积雪覆盖反演算法研究——纪念杰出的地理学家、冰川学家施雅风先生逝世一周年[J]. 第四纪研究, 2012, 32(1):6-15.
Shi J C. An automatic algorithm on estimating sub-pixel snow cover from modis[J]. Quaternary Sciences, 2012, 32(1):6-15.
[39] Hao S, Jiang L, Shi J, et al. Assessment of MODIS-based fractional snow cover products over the Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2):533-548.
[40] 赵宏宇, 郝晓华, 郑照军, 等. 基于FY-3D/MERSI-Ⅱ的积雪面积比例提取算法[J]. 遥感技术与应用, 2018, 33(6):1004-1016.
Zhao H Y, Hao X H, Zheng Z J, et al. A new algorithm of fractional snow cover basing on FY-3D/MERSI-Ⅱ[J]. Remote Sensing Technology and Application, 2018, 33(6):1004-1016.
[41] 朱骥, 施建成, 张祥信, 等. 基于AVHRR/210d合成数据的青藏高原亚像元雪填图[J]. 武汉大学学报(信息科学版), 2017, 42(12):1725-1730.
Zhu J, Shi J C, Zhang X X, et al. Subpixel snow mapping using AVHRR/2 10-day compositing data of Qinghai-Tibet Plateau[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1725-1730.
[42] Allen R C Jr, Durkee P A, Wash C H. Snow/cloud discrimination with multispectral satellite measurements[J]. American Meteorological Society, 1990.
[43] Slater M T, Sloggett D R, Rees W G, et al. Potential operational multi-satellite sensor mapping of snow cover in maritime sub-polar regions[J]. International Journal of Remote Sensing, 1999, 20(15/16):3019-3030.
[44] Huang Y, Xu J, Xu J, et al. HMRFS-TP:Long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model[J]. Earth System Science Data, 2022, 14(9):4445-4462.
[45] Moosavi V, Malekinezhad H, Shirmohammadi B. Fractional snow cover mapping from MODIS data using wavelet-artificial intelligence hybrid models[J]. Journal of Hydrology, 2014, 511:160-170.
[46] Dozier J, Painter T H, Rittger K, et al. Time-space continuity of daily maps of fractional snow cover and albedo from MODIS[J]. Advances in Water Resources, 2008, 31(11):1515-1526.
[47] McCreight J L, Small E E. Modeling bulk density and snow water equivalent using daily snow depth observations[J]. The Cryosphere, 2014, 8(2):521-536.
[48] Takala M, Luojus K, Pulliainen J, et al. Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements[J]. Remote Sensing of Environment, 2011, 115(12):3517-3529.
[49] 施建成, 熊川, 蒋玲梅. 雪水当量主被动微波遥感研究进展[J]. 中国科学:地球科学, 2016, 46(4):529-543.
Shi J C, Xiong C, Jiang L M. Review of snow water equivalent microwave remote sensing[J]. Scientia Sinica (Terrae), 2016, 46(4):529-543.
[50] 黄新宇, 冯筠. 冰雪微波遥感研究进展[J]. 遥感技术与应用, 2004, 19(6):533-536.
Huang X Y, Feng Y. The development of study on the snow ice using microwave remote sensing data[J]. Remote Sensing Technology and Application, 2004, 19(6):533-536.
[51] 赵亮, 朱玉祥, 程亮, 等. 遥感-测站相结合的动态雪深反演方法初探[J]. 应用气象学报, 2010, 21(6):685-697.
Zhao L, Zhu Y X, Cheng L, et al. A dynamic approach to retrieving snow depth based on integration of remote sensing and observed data[J]. Journal of Applied Meteorological Science, 2010, 21(6):685-697.
[52] Mätzler C. Applications of the interaction of microwaves with the natural snow cover[J]. Remote Sensing Reviews, 1987, 2(2):259-387.
[53] Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of Glaciology, 1987, 9:39-44.
[54] Gladkova I, Grossberg M, Bonev G, et al. Increasing the accuracy of MODIS/aqua snow product using quantitative image restoration technique[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):740-743.
[55] Lee Y K, Kongoli C, Key J. An in-depth evaluation of heritage algorithms for snow cover and snow depth using AMSR-E and AMSR2 measurements[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(12):2319-2336.
[56] Foster J L, Chang A T C, Hall D K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm,a revised algorithm and a snow depth climatology[J]. Remote Sensing of Environment, 1997, 62(2):132-142.
[57] Foster J L, Sun C, Walker J P, et al. Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005, 94(2):187-203.
[58] 曹梅盛, 冯学智, 金德洪. 积雪的若干光谱反射特征[J]. 科学通报, 1982, 27(20):1259-1261.
Cao M S, Feng X Z, Jin D H. Some spectral reflection characteristics of snow cover[J]. Chinese Science Bulletin, 1982, 27(20):1259-1261.
[59] 曹梅盛, 冯学智, 金德洪. 积雪若干光谱反射特征的初步研究[J]. 冰川冻土, 1984, 6(3):15-26,99-102.
Cao M S, Feng X Z, Jin D H. Preliminary research on some characteristics of the spectral reflection of snow cover[J]. Journal of Glaciology and Geocryology, 1984, 6(3):15-26,99-102.
[60] 曹梅盛, 李培基, Robinson D A, 等. 中国西部积雪SMMR微波遥感的评价与初步应用[J]. 环境遥感, 1993(4):260-269.
Cao M S, Li P J, Robinson D A, et al. Evaluation and primary application of microwave remote sensing smmr-derived snow cover in western China[J]. National Remote Sensing Bulletin, 1993(4):260-269.
[61] 车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3):363-368.
Che T, Li X, Gao F. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3):363-368.
[62] 孙知文, 施建成, 杨虎, 等. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2):264-267.
Sun Z W, Shi J C, Yang H, et al. A study on snow depth estimating and snow water equivalent algorithm for FY-3 MWRI[J]. Remote Sensing Technology and Application, 2007, 22(2):264-267.
[63] Kelly R E, Chang A T, Tsang L, et al. A prototype AMSR-E global snow area and snow depth algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):230-242.
[64] Kelly R. The AMSR-E snow depth algorithm:Description and initial results[J]. Journal of Remote Sensing, 2009, 29:307-317.
[65] Taheri M, Mohammadian A. An overview of snow water equivalent:Methods,challenges,and future outlook[J]. Sustainability, 2022, 14(18):11395.
[66] Pulliainen J T, Grandell J, Hallikainen M T. HUT snow emission model and its applicability to snow water equivalent retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1378-1390.
[67] Butt M J. A comparative study of Chang and HUT models for UK snow depth retrieval[J]. International Journal of Remote Sensing, 2009, 30(24):6361-6379.
[68] Dai L, Che T, Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang,China[J]. Remote Sensing of Environment, 2012, 127:14-29.
[69] Vafakhah M, Nasiri K A, Janizadeh S, et al. Evaluating different machine learning algorithms for snow water equivalent prediction[J]. Earth Science Informatics, 2022, 15(4):2431-2445.
[70] Forman B A, Reichle R H. Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow-covered land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9):4431-4441.
[71] Bair E H, Abreu Calfa A, Rittger K, et al. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan[J]. The Cryosphere, 2018, 12(5):1579-1594.
[72] Xiao X, Zhang T, Zhong X, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sensing of Environment, 2018, 210:48-64.
[73] Eppler J, Rabus B, Morse P. Snow water equivalent change mapping from slope-correlated synthetic aperture Radar interferometry (InSAR) phase variations[J]. The Cryosphere, 2022, 16(4):1497-1521.
[74] Tedesco M, Jeyaratnam J. A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures[J]. Remote Sensing, 2016, 8(12):1037.
[75] Kim R S, Durand M, Li D, et al. Estimating alpine snow depth by combining multifrequency passive radiance observations with ensemble snowpack modeling[J]. Remote Sensing of Environment, 2019, 226:1-15.
[76] Aalstad K, Westermann S, Schuler T V, et al. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites[J]. The Cryosphere, 2018, 12(1):247-270.
[77] Cortés G, Margulis S. Impacts of El Niño and La Niña on interannual snow accumulation in the Andes:Results from a high-resolution 31year reanalysis[J]. Geophysical Research Letters, 2017, 44(13):6859-6867.
[78] Wallbank J R, Cole S J, Moore R J, et al. Estimating snow water equivalent using cosmic-ray neutron sensors from the COSMOS-UK network[J]. Hydrological Processes, 2021, 35(5):16420.
[79] Dagurov P N, Chimitdorzhiev T N, Dmitriev A V, et al. Estimation of snow water equivalent from L-band Radar interferometry:Simulation and experiment[J]. International Journal of Remote Sensing, 2020, 41(24):9328-9359.
[80] Zhu J, Tan S, Tsang L, et al. Snow water equivalent retrieval using active and passive microwave observations[J]. Water Resources Research, 2021, 57(7):e2020WR027563.
[81] Cheng Q S, Chen Y M, Yang J X, et al. An enhanced method for estimating snow water equivalent in the central part of the Tibetan Plateau using raster segmentation and eigenvector spatial filtering regression model[J]. Journal of Mountain Science, 2022, 19(9):2570-2586.
[82] Yang Y, Fang S, Wu H, et al. High-resolution inversion method for the snow water equivalent based on the GF-3 satellite and optimized EQeau model[J]. Remote Sensing, 2022, 14(19):4931.
[83] Steiner L, Studemann G, Grimm D E, et al. (Near) real-time snow water equivalent observation using GNSS refractometry and RTKLIB[J]. Sensors, 2022, 22(18):6918.
[84] 于小淇. 高亚洲地区积雪面积产品去云方法研究及精度验证[D]. 阜新: 辽宁工程技术大学, 2017.
Yu X Q. Cloud removing method and accuracy verification of snow extent product in high Asia area[D]. Fuxin: Liaoning Technical University, 2017.
[85] 段金亮. 基于混合像元分解的川西高原地区积雪覆盖度反演模型[D]. 成都: 西南交通大学, 2021.
Duan J L. Inversion model of snow coverage in western Sichuan Plateau based on mixed pixel decomposition[D]. Chengdu: Southwest Jiaotong University, 2021.
[86] Ramsay B H. The interactive multisensor snow and ice mapping system[J]. Hydrological Processes, 1998, 12(10/11):1537-1546.
[87] Helfrich S R, McNamara D, Ramsay B H, et al. Enhancements to,and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS)[J]. Hydrological Processes, 2007, 21(12):1576-1586.
[88] 张帅. 基于CLDAS的遥感积雪产品同化研究与应用[D]. 南京: 南京信息工程大学, 2019.
Zhang S. Research of remote sensing snow product assimilation based on CLDAS and its application[D]. Nanjing: Nanjing University of Information Science & Technology, 2019.
[89] 黄晓东, 郝晓华, 王玮, 等. MODIS逐日积雪产品去云算法研究[J]. 冰川冻土, 2012, 34(5):1118-1126.
Huang X D, Hao X H, Wang W, et al. Algorithms for cloud removal in MODIS daily snow products[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1118-1126.
[90] 邱玉宝, 郭华东, 除多, 等. 青藏高原MODIS逐日无云积雪面积数据集(2002—2015年)[J]. 中国科学数据, 2016, 1(1):7-17.
Qiu Y B, Guo H D, Chu D, et al. MODIS daily cloud-free snow cover products over Tibetan Plateau(2002—2015)[J]. China Scientific Data, 2016, 1(1):7-17.
[91] Parajka J, Blöschl G. Validation of MODIS snow cover images over Austria[J]. Hydrology and Earth System Sciences, 2006, 10(5):679-689.
[92] 邹逸凡, 孙鹏, 张强, 等. 2001—2019年横断山区积雪时空变化及其影响因素分析[J]. 冰川冻土, 2021, 43(6):1641-1658.
doi: 10.7522/j.issn.1000-0240.2021.0065
Zou Y F, Sun P, Zhang Q, et al. Analysis on spatial-temporal variation of snow cover and its influencing factors in the Hengduan Mountains from 2001 to 2019[J]. Journal of Glaciology and Geocryology, 2021, 43(6):1641-1658.
doi: 10.7522/j.issn.1000-0240.2021.0065
[93] 陈思勇. MODIS积雪产品去云算法研究及应用[D]. 兰州: 兰州大学, 2021.
Chen S Y. Research and application of cloud removal algorithm for MODIS snow products[D]. Lanzhou: Lanzhou University, 2021.
[94] 周婵. 青藏高原地表反照率与积雪遥感产品的分析与应用研究[D]. 南京: 南京信息工程大学, 2016.
Zhou C. Analysis and application of remote sensing products of surface albedo and snow cover in Qinghai-Tibet Plateau[D]. Nanjing: Nanjing University of Information Science & Technology, 2016.
[95] 谢佩瑶, 韩超, 欧阳志棋, 等. 青藏高原不同土地覆盖类型下积雪面积判别算法优化[J]. 冰川冻土, 2023, 45(3):1168-1179.
doi: 10.7522/j.issn.1000-0240.2022.0364
Xie P Y, Han C, Ouyang Z Q, et al. Optimization of snow area discrimination algorithm under different land cover types in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2023, 45(3):1168-1179.
doi: 10.7522/j.issn.1000-0240.2022.0364
[96] Metsämäki S, Pulliainen J, Salminen M, et al. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment[J]. Remote Sensing of Environment, 2015, 156:96-108.
[97] 梁顺林, 李小文, 王锦地, 等. 定量遥感:理念与算法[M].2版. 北京: 科学出版社, 2019.
Liang S L, Li X W, Wang J D. Quantitative remote sensing:Ideas and algorithms[M].2nd ed. Beijing: Science Press, 2019.
[98] 赵文宇. 基于被动微波遥感和MODIS产品的天山雪水当量降尺度研究[D]. 石河子: 石河子大学, 2016.
Zhao W Y. Downscaling of snow water equivalent in Tianshan Mountains based on passive microwave remote sensing and MODIS products[D]. Shihezi: Shihezi University, 2016.
[99] 邱玉宝, 卢洁羽, 石利娟, 等. 高亚洲地区被动微波遥感雪水当量数据集[J]. 中国科学数据, 2019, 4(1):110-125.
Qiu Y B, Lu J Y, Shi L J, et al. Passive microwave remote sensing data of snow water equivalent in High Asia[J]. China Scientific Data, 2019, 4(1):110-125.
[100] 刘晓敬. 被动微波遥感雪深反演混合像元问题研究[J]. 测绘学报, 2022, 51(2):313.
doi: 10.11947/j.AGCS.2022.20200430
Liu X J. Study on the mixed pixel effect on passive microwave snow depth retrieval[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):313.
doi: 10.11947/j.AGCS.2022.20200430
[1] 王泽坤, 甘甫平, 闫柏琨, 李贤庆, 李和谋. 雪深和雪水当量被动微波反演及应用进展[J]. 自然资源遥感, 2022, 34(3): 1-9.
[2] 除多, 达娃, 拉巴卓玛, 徐维新, 张娟. 基于MODIS数据的青藏高原积雪时空分布特征分析[J]. 国土资源遥感, 2017, 29(2): 117-124.
[3] 孙知文, 于鹏珊, 夏浪, 武胜利, 蒋玲梅, 郭镭. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发