Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (1): 9-15    DOI: 10.6046/gtzyyg.2015.01.02
  综述 本期目录 | 过刊浏览 | 高级检索 |
被动微波遥感积雪参数反演方法进展
孙知文1, 于鹏珊2, 夏浪3, 武胜利4, 蒋玲梅5, 郭镭1
1. 航天恒星科技有限公司, 北京 100086;
2. 北京神舟航天软件技术有限公司, 北京 100094;
3. 农业部资源遥感与数字农业重点开放实验室, 北京 100081;
4. 国家卫星气象中心, 北京 100081;
5. 北京师范大学遥感科学国家重点实验室, 北京 100875
Progress in study of snow parameter inversion by passive microwave remote sensing
SUN Zhiwen1, YU Pengshan2, XIA Lang3, WU Shengli4, JIANG Lingmei5, GUO Lei1
1. Space Star Technology Co., Ltd., Beijing 100086, China;
2. Beijing Shenzhou Aerospace Software Technology Co., Ltd., Beijing 100094, China;
3. Key Laboratory of Resource Remote Sensing and Digital Agriculture, Beijing 100081, China;
4. National Satellite Meteorological Center, Beijing 100081, China;
5. State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China
全文: PDF(1043 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 雪深(snow depth,SD)和雪水当量(snow water equivalent,SWE)是气候水文研究中的重要参数,在雪灾监测中尤为重要。首先,简要介绍了被动微波遥感SD和SWE反演算法的物理基础——积雪微波辐射传输模型,分析了不同微波频段、不同特点的积雪微波辐射和散射特性。然后,根据前人的研究从数学角度将反演算法分为线性亮温梯度法和基于先验知识法,总结了2类算法的优势和局限性: 线性亮温梯度法相对简单、速度快,一般只适用于特定的研究区; 先验知识法需要获取研究区的样本数据,并反复训练才能达到较好的精度,但对样本的独立性及其均值差异显著性的要求较高。最后,重点介绍了我国风云三号微波成像仪(FY-3 MWRI)的全球SD和SWE反演算法和针对中国区域的改进算法,并对未来的研究热点进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖春蕾
郭兆成
张宗贵
李迁
尚博譞
吴芳
关键词 LiDAR点云滤波微地貌特征地裂缝识别线性探测    
Abstract:Snow depth(SD)and snow water equivalent(SWE)are key parameters in hydrology and climate research,especially in the snowstorm monitoring. In this paper,the authors first provided a brief background of the physical basis of the SD and SWE inversion algorithm,i.e., the snow microwave radiative transfer model,and discussed the snow microwave radiation and scattering in different microwave frequencies. After that, the former snow estimation inversion algorithms were reviewed, which can be categorized into two types: linear brightness temperature gradient and prior knowledge-based from mathematical methods. The advantages and limitations of the two algorithms were summarized. The linear brightness temperature gradient method is easier and runs faster,but it only suits specific study areas. For the establishment of a prior knowledge-based model,researchers need to obtain the sample data and repeated training so as to achieve higher accuracy. However, the model requires the independence and significant mean difference of the samples. The SD and SWE inversion algorithms for Fengyun-3 microwave radiation imager (FY-3 MWRI) were described,which are composed of global business algorithm and improved regional algorithm for China. Finally, the research focuses in this aspect were predicted.
Key wordsLiDAR    point cloud filtering    micro-geomorphologic features    fissure identification    linear detection
收稿日期: 2013-11-05      出版日期: 2014-12-08
:  TP79  
作者简介: 孙知文(1983-),男,工程师,主要从事微波遥感、微波辐射定标等方向的研究。Email: sunzhiwen503@163.com。
引用本文:   
孙知文, 于鹏珊, 夏浪, 武胜利, 蒋玲梅, 郭镭. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1): 9-15.
SUN Zhiwen, YU Pengshan, XIA Lang, WU Shengli, JIANG Lingmei, GUO Lei. Progress in study of snow parameter inversion by passive microwave remote sensing. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 9-15.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.01.02      或      https://www.gtzyyg.com/CN/Y2015/V27/I1/9
[1] Hall D K,Riggs G A,Salomonson V V.MODIS/AQUA snow cover 8-day L3 global 0. 05deg CMG Version 5[DB/OL].Boulder, Colorado USA: National Snow and Ice Data Center.Digital media,2007,updated daily.http://nsidc.org/data/myd10c2.html.
[2] 王世杰.利用NOAA/AVHRR影像资料估算积雪量的方法探讨[J].冰川冻土,1998,20(1):68-73. Wang S J.Exploring the estimation of snowpack volume with NOAA/AVHRR satellite data[J].Journal of Glaciology and Geocryology,1998,20(1):68-73.
[3] Hall D,Riggs G,Salomonson V V.Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J].Remote Sensing of Environment,1995,54(2):127-140.
[4] 周咏梅,贾生海,刘萍.利用NOAA-AVHRR资料估算积雪参量[J].气象科学,200l,21(1):117-121. Zhou Y M,Jia S H,Liu P.The method of snowcover parameters estimation using NOAA-AVHRR data[J].Scientia Meteorologica Sinica,2001,21(1):117-121.
[5] (美)乌拉比F T,穆尔 R K,冯建超.微波遥感[M].北京:科学出版社,1986. Ulaby F T,Moore R K,Fung J C.Microwave Remote Sensing:Active and Passive[M].Norwood, MA:Artech House,1986.
[6] 金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社,1993. Jin Y Q.Remote Sensing Theory of Electromagnetic Scattering and Thermal Emission[M].Beijing:Science Press,1993.
[7] (美)霍尔 D K,马丁内克 J.冰雪遥感[M].顾钟炜,陈贤章,冯学智,等译.兰州:甘肃科学技术出版社,1991. Hall D K,Martinec J.Remote Sensing of Ice and Snow[M].London:Chapman and Hall,1985.
[8] Tsang L,Kong J A,Shin R T.Theory of Microwave Remote Sensing[M].New York:Wiley,1985.
[9] 蒋玲梅.被动微波雪水当量研究[D].北京:北京师范大学,2005. Jiang L M.Passive Microwave Remote Sensing of Snow Water Equivalence Study[D].Beijing:Beijing Normal University,2005.
[10] Tsang L,Kong J A.Multiple scattering of electromagnetic waves by random distribution of discrete scatterers with coherent potential and quantum mechanical formalism[J].Journal of Applied Physics,1980,51(7):3465-3485.
[11] Armstrong R L,Brodzik M J.Recent northen hemisphere snow extent:A comparison of data derived from visible and microwave satellite sensors[J].Geophysical Research Letters,2001,28(19):3673-3676.
[12] 车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368. Che T,Li X,Gao F.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data(SSM/I)[J].Journal of Glaciology and Geocryology,2004,26(3):363-368.
[13] Martinec J.Expected snow loads on structures from incomplete hydrological data[J].Journal of Glaciology,1978,19:185-195.
[14] Bernier P Y.Microwave remote sensing of snowpack properties:Potential and limitations[J].Nordic Hydrology,1987,18(1):1-20.
[15] Rango A,Chang A T C,Foster J L.The utilization of spaceborne microwave radiometers for monitoring snowpack properties[J].Nordic Hydrology,1979,10(1):25-40.
[16] Josberger E G,Mognard N M.A passive microwave snow depth algorithm with a proxy for snow metamorphism[J].Hydrological Processes,2002,16(8):1557-1568.
[17] Goodison B E,Walker A E.Use of snow cover derived from satellite passive microwave data as an indicator of climate change[J].Annals of Glaciology,1993,17:137-142.
[18] Chang A T C,Foster J L,Hall D K.NIMBUS-7 SMMR derived global snow cover parameters[J].Annals of Glaciology,1987,9:39-44.
[19] Tedesco M,Pulliainen J,Takala,et al.Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data[J].Remote Sensing of Environment,2004,90(1):76-85.
[20] Kelly R.The AMSR-E snow depth algorithm:Description and initial results[J].Journal of the Remote Sensing Society of Japan,2009,29(1):307-317.
[21] 孙知文,施建成,杨虎,等.风云三号微波成像仪积雪参数反演算法初步研究[J].遥感技术与应用,2007,22(2):264-267. Sun Z W,Shi J C,Yang H,et al.A study on snow depth estimating and snow water equivalent algorithm for FY-3 MWRI[J].Remote Sensing Technology and Application,2007,22(2):264-267.
[22] Ulaby F T,Moore R K,Fung A K.Microwave Remote Sensing:Active and Passive.Volume I:Microwave Remote Sensing Fundamentals and Radiometry[M].Reading,Massachusetts:Addison-Wesley,Advanced Book Program,1981:1-456.
[23] England A W.Thermal microwave emission from a scattering layer[J].Journal of Geophysical Research,1975,80(32):4484-4496.
[24] Pulliainen J T,Grandell J,Hallikainen M T.HUT snow emission model and its applicability to snow water equivalent retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1378-1390.
[25] Wiesmann A,Mtzler C.Microwave emission model of layered snowpacks[J].Remote Sensing of Environment,1999,70(3):307-316.
[26] Tsang L.Dense media radiative transfer theory for dense discrete random media with spherical particles of multiple sizes and permittivities[J].Progress in Electromagnetics Research,1992,5(6):181-230.
[27] Tsang L,Chen C T,Chang A T C,et al.Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow[J].Radio Science,2000,35(3):731-749.
[28] Fung A K.Microwave Scattering and Emission Models and Their Applications[M].Boston:Artech House,1994:1-573.
[29] Armstrong R L,Rango A,Chang A T C,et al.Snow depths and grain size relationships with relevance for passive microwave studies[J].Annals of Glaciology,1993,17:171-176.
[30] Chang A T C,GIoersen P,Schmugge T,et al.Microwave emission from snow and glacier ice[J].Journal of Glaciology,1976,16(74):23-39.
[31] Langlois A,Royer A,Dupont F,et al.Improved corrections of forest effects on passive microwave satellite remote sensing of snow over boreal and subarctic regions[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3824-3837.
[32] Sturm M,Holmgren J,Liston G E.A seasonal snow cover classification system for local to global applications[J].Journal of Climate,1995,8(5):1261-1283.
[33] Kelly R E,Chang A T,Tsang L,et al.A prototype AMSR-E global snow area and snow depth algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):230-242.
[34] Grippa M,Mognard N,Toan T L,et al.Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm[J].Remote Sensing of Environment,2004,93(1-2):30-41.
[35] Goodison B,Walker A.Canadian development and use of snow cover information from passive microwave satellite data[M]//Choudhury B,Kerr Y H,Njoku E G,et al.Passive Microwave Remote Sensing of Land-Atmosphere Interactions.Utrecht:VSP International Science Publishers,1995:245-262.
[36] Davis D T,Chen Z X,Tsang L,et al.Retrieval of snow parameters by iterative inversion of a neural network[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(4):842-852.
[37] Durand M,Liu D S.The need for prior information in characterizing snow water equivalent from microwave brightness temperatures[J].Remote Sensing of Environment,2012,126:248-257.
[38] 杨虎,郭华东,王长林,等.基于神经网络方法的极化雷达地表参数反演[J].遥感学报,2002,6(6):451-455. Yang H,Guo H D,Wang C L,et al.Polarimetric SAR surface parameters inversion based on neural network[J].Journal of Remote Sensing,2002,6(6):451-455.
[39] 孙知文.风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发[D].北京:北京师范大学,2007. Sun Z W.Estimate Snow Depth and Snow Water Equivalent Algorithm for FY-3 MWRI and Development of System[D].Beijing:Beijing Normal University,2007.
[40] Chang A T C,Rango A.Algorithm Theoretic Basis Document(ATBD) for the AMSR-E Snow Water Equivalent Algorithm,Version 3.1[R].USA:NASA,2000.
[41] 杨虎,李小青,游然,等.风云三号微波成像仪定标精度评价及业务产品介绍[J].气象科技进展,2013,3(4):136-143. Yang H,Li X Q,You R,et al.Environmental data records from Feng Yun-3B mircowave radiation imager[J].Advances in Meteorological Science and Technology,2013,3(4):136-143.
[42] Hallikainen M T,Ulaby F,Abdelrazik M.Dielectric properties of snow in the 3 to 37 GHz range[J].IEEE Transactions on Antennas and Propagation,1986,34(11):1329-1340.
[1] 孟蕾, 林超. 机载LiDAR技术生成DEM的质量检查与解决方案探讨[J]. 国土资源遥感, 2020, 32(1): 7-12.
[2] 朱军桃, 王雷, 赵传, 郑旭东. 基于区域生长算法的复杂建筑物屋顶点云分割[J]. 国土资源遥感, 2019, 31(4): 20-25.
[3] 闫利, 李瑶, 谢洪. 基于机载与车载LiDAR数据的LoD3城市建筑物模型自动重建[J]. 国土资源遥感, 2018, 30(4): 97-101.
[4] 李云帆, 谭德宝, 刘瑞, 邬建伟. 顾及建筑物屋顶结构的改进RANSAC点云分割算法[J]. 国土资源遥感, 2017, 29(4): 20-25.
[5] 李佳俊, 钟若飞. 轻小型机载LiDAR的航线设计[J]. 国土资源遥感, 2017, 29(2): 97-103.
[6] 于海洋, 罗玲, 马慧慧, 李辉. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017, 29(2): 138-143.
[7] 王春林, 孙金彦, 周绍光, 钱海明, 黄祚继. 影像辅助下LiDAR数据建筑物轮廓信息提取[J]. 国土资源遥感, 2017, 29(1): 78-85.
[8] 査达剑, 李乐林, 江万寿, 韩用顺. LiDAR三维重建中基于CSG方法的扩展研究[J]. 国土资源遥感, 2016, 28(4): 35-42.
[9] 王雪, 李培军, 姜莎莎, 刘婧, 宋本钦. 利用机载LiDAR数据和高分辨率图像提取复杂城区建筑物[J]. 国土资源遥感, 2016, 28(2): 106-111.
[10] 董保根, 车森, 解龙根, 单国慧, 何乔. Mode滤波器及其在遥感分类后处理中的应用[J]. 国土资源遥感, 2016, 28(2): 62-66.
[11] 唐菲菲, 阮志敏, 张亚利, 彭丽. 基于机载LiDAR和GIS数据的建筑物变化信息自动检测方法[J]. 国土资源遥感, 2016, 28(1): 57-62.
[12] 肖春蕾, 郭兆成, 郑雄伟, 刘圣伟, 尚博譞. 机载LiDAR技术在地质调查领域中的几个典型应用[J]. 国土资源遥感, 2016, 28(1): 136-143.
[13] 陈洁, 肖春蕾, 李京. 无检校场的机载LiDAR点云数据检校方法[J]. 国土资源遥感, 2015, 27(4): 27-33.
[14] 李乐林, 江万寿, 郭程方. 基于区域多次回波点密度分析的城区LiDAR建筑物提取[J]. 国土资源遥感, 2015, 27(2): 29-35.
[15] 吴芳, 张宗贵, 郭兆成, 安志宏, 于坤, 李婷. 基于机载LiDAR点云滤波的矿区DEM构建方法[J]. 国土资源遥感, 2015, 27(1): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发