Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 221-231    DOI: 10.6046/zrzyyg.2023226
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
2000—2020年山西省植被生长状态对气象干旱的响应
赵富(), 王莉(), 马禹昂, 蒋瑞霞
河南理工大学测绘与国土信息工程学院,焦作 454003
Responses of vegetation growth conditions to meteorological drought in Shanxi Province from 2000 to 2020
ZHAO Fu(), WANG Li(), MA Yuang, JIANG Ruixia
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
全文: PDF(5827 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 基于2000—2020年标准化降水指数(standardized precipitation index, SPI)与植被状态指数(vegetation condition index, VCI),采用变分模态分解(variational mode decomposition, VMD)、Mann-Kendall趋势分析、Pearson相关系数等方法,分析了山西省不同植被类型下气象干旱变化趋势,量化了植被生长状态对气象干旱的响应时间。结果表明: ①20世纪以来,山西省整体气象干旱逐步缓解,但季尺度上呈现由春至冬旱情加重区不断扩大的态势; ②不同植被类型下气象干旱均得到缓解,且随着时间尺度增长,态势越发显著,而季尺度上由春至冬缓解态势渐弱,加重态势渐强; ③植被生长状态受气象干旱影响显著,年尺度上主要以正相关为主,季尺度上高相关性区域由春至冬逐渐收缩至西北部和东北部,而响应时间呈现出春冬长于秋夏的特征; ④不同植被类型下植被生长状态对气象干旱的响应均在夏季最为迅速,且耕地是对气象干旱最敏感的地类。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵富
王莉
马禹昂
蒋瑞霞
关键词 SPIVCI气象干旱响应关系山西省    
Abstract

Based on the standardized precipitation index (SPI) and vegetation condition index (VCI) from 2000 to 2020, this study analyzed the trends in meteorological drought across different vegetation types in Shanxi Province using methods such as variational mode decomposition (VMD), Mann-Kendall trend analysis, and Pearson correlation coefficient. Accordingly, this study quantified the response time of vegetation growth conditions to meteorological drought. The results indicate that from the beginning of the 2000s, the overall meteorological drought in Shanxi Province has gradually eased. However, on a seasonal scale, areas with increasingly aggravated drought continuously expand from spring to winter. Meteorological drought has alleviated across various vegetation types, with the alleviation becoming increasingly significant with an increase in the time scale. In contrast, on a seasonal scale, the drought relief gradually weakens from spring to winter, during which drought aggravation progressively strengthens. Vegetation growth conditions are significantly influenced by meteorological drought. On the annual scale, there is a predominantly positive correlation between both. On the seasonal scale, areas with a strong correlation between both gradually contract from spring to winter, when such areas are dominated by the northwestern and northeastern areas of the province. Additionally, the response time of vegetation to drought is longer in spring and winter compared to autumn and summer. Across different vegetation types, the responses of vegetation growth conditions to meteorological drought prove the most rapid during the summer, and cultivated lands are identified as the most sensitive land type to meteorological drought.

Key wordsSPI    VCI    meteorological drought    response relationship    Shanxi Province
收稿日期: 2023-07-24      出版日期: 2025-02-17
ZTFLH:  TP79  
  P461  
基金资助:河南省科技攻关项目“基于GIS的大学生体质健康评价与预警技术研究”(192102310025);河南理工大学国家社科基金预研项目“我国城乡青少年体质健康时空差异及体制提升研究”(CSKY2023-04)
通讯作者: 王 莉(1981-),女,博士,副教授,主要从事地理信息系统研究。Email: wangli29@hpu.edu.cn
作者简介: 赵 富(2000-),男,硕士研究生,主要从事气象学与地理信息技术及应用研究。Email: zhaofu_2000@163.com
引用本文:   
赵富, 王莉, 马禹昂, 蒋瑞霞. 2000—2020年山西省植被生长状态对气象干旱的响应[J]. 自然资源遥感, 2025, 37(1): 221-231.
ZHAO Fu, WANG Li, MA Yuang, JIANG Ruixia. Responses of vegetation growth conditions to meteorological drought in Shanxi Province from 2000 to 2020. Remote Sensing for Natural Resources, 2025, 37(1): 221-231.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023226      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/221
Fig.1  山西省地形、植被类型及气象站点分布
Fig.2  年与月尺度SPI变化趋势
Fig.3  季尺度SPI变化趋势
土地类型 类别 SPI1 SPI3 SPI12 春季 夏季 秋季 冬季
耕地 z 0.604 0.609 1.693* 2.420** 1.419 0.635 -0.544 -0.974
s 0.044 0.001 0.002 0.003 0.046 0.033 -0.025 -0.031
草地 z 2.477** 1.075 2.818*** 6.555*** 1.359 1.178 0.030 0.616
s 0.082 0.001 0.003 0.006 0.049 0.048 0.002 -0.021
林地 z 0.967 0.407 1.439 2.461** 1.571 0.574 -0.574 -0.974
s 0.034 0.000 0.001 0.002 0.050 0.033 -0.025 -0.033
无植被区 z 1.298 0.753 2.141** 3.661*** 1.480 1.238 -0.513 -0.876
s 0.051 0.001 0.002 0.003 0.040 0.050 -0.027 -0.035
Tab.1  不同植被类型下年、月与季尺度SPI变化趋势
Fig.4-1  草地春季SPI的VMD分解
Fig.4-2  草地春季SPI的VMD分解
Fig.5  年尺度VCISPI12的相关系数及显著性检验空间分布
Fig.6  季尺度VCI与不同时间尺度SPI的最大相关系数空间分布
Fig.7  季尺度VCISPI的响应时间
Fig.8  各月VCI与1~24个月时间尺度SPI的相关系数均值
土地
类型
4月 5月 6月 7月 8月 9月 10月
R 响应时
/
R 响应时
/
R 响应时
/
R 响应时
/
R 响应时
/
R 响应时
/
R 响应时
/
耕地 0.38 8 0.41 2 0.47 5 0.49 6 0.44 7 0.37 16 0.24 9
草地 0.49 15 0.47 16 0.46 5 0.50 6 0.49 19 0.46 16 0.43 9
林地 0.33 24 0.49 3 0.37 5 0.25 18 0.28 7 0.24 16 0.37 12
无植被区 0.32 7 0.29 8 0.41 5 0.38 6 0.27 10 0.21 16 0.16 10
Tab.2  不同植被类型下生长季最大相关系数及对应时间尺度
[1] Varela V, Vlachogiannis D, Sfetsos A, et al. Projection of forest fire danger due to climate change in the French Mediterranean region[J]. Sustainability, 2019, 11(16):4284.
[2] Zhou Z Q, Shi H Y, Fu Q, et al. Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in Northeast China[J]. Journal of Hydrology, 2020,588:125097.
[3] Heim R R Jr. A review of twentieth-century drought indices used in the United States[J]. Bulletin of the American Meteorological Society, 2002, 83(8):1149-1166.
[4] Li J, Wu C, Xia C A, et al. Assessing the responses of hydrological drought to meteorological drought in the Huai River basin,China[J]. Theoretical and Applied Climatology, 2021, 144(3):1043-1057.
[5] 吴燕锋, 巴特尔·巴克, 李维, 等. 基于综合气象干旱指数的1961—2012年阿勒泰地区干旱时空演变特征[J]. 应用生态学报, 2015, 26(2):512-520.
Wu Y F, Bake B, Li W, et al. Spatio-temporal variation of drought condition during 1961 to 2012 based on composite index of meteorological drought in Altay region,China[J]. Chinese Journal of Applied Ecology,2015, 26(2):512-520.
[6] 刘永佳, 黄生志, 方伟, 等. 不同季节气象干旱向水文干旱的传播及其动态变化[J]. 水利学报, 2021, 52(1):93-102.
Liu Y J, Huang S Z, Fang W, et al. Propagation and dynamic change of meteorological drought to hydrological drought in different seasons[J]. Journal of Hydraulic Engineering, 2021, 52(1):93-102.
[7] 靖娟利, 王永锋, 和彩霞. 滇黔桂地区NDVI变化及其对SPEI的响应特征[J]. 长江流域资源与环境, 2022, 31(8):1763-1775.
Jing J L, Wang Y F, He C X. Spatial and temporal variations of NDVI and its response to SPEI in Yunnan-Guizhou-Guangxi region[J]. Resources and Environment in the Yangtze Basin, 2022, 31(8):1763-1775.
[8] 张更喜, 粟晓玲, 郝丽娜, 等. 基于NDVI和scPDSI研究1982—2015年中国植被对干旱的响应[J]. 农业工程学报, 2019, 35(20):145-151.
Zhang G X, Su X L, Hao L N, et al. Response of vegetation to drought based on NDVI and scPDSI data sets from 1982 to 2015 across China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20):145-151.
[9] 李家誉, 佘敦先, 张利平, 等. 黄土高原植被变化对气象干旱多尺度响应特征与机制[J]. 水土保持学报, 2022, 36(6):280-289.
Li J Y, She D X, Zhang L P, et al. Multi-scale response characteristics and mechanism of vegetation to meteorological drought on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2022, 36(6):280-289.
[10] 李明, 葛晨昊, 邓宇莹, 等. 黄土高原气象干旱和农业干旱特征及其相互关系研究[J]. 地理科学, 2020, 40(12):2105-2114.
doi: 10.13249/j.cnki.sgs.2020.12.017
Li M, Ge C H, Deng Y Y, et al. Meteorological and agricultural drought characteristics and their relationship across the Loess Plateau[J]. Scientia Geographica Sinica, 2020, 40(12):2105-2114.
doi: 10.13249/j.cnki.sgs.2020.12.017
[11] 张华, 徐存刚, 王浩. 2001—2018年西北地区植被变化对气象干旱的响应[J]. 地理科学, 2020, 40(6):1029-1038.
doi: 10.13249/j.cnki.sgs.2020.06.019
Zhang H, Xu C G, Wang H. Response of vegetation change to meteorological drought in Northwest China from 2001 to 2018[J]. Scientia Geographica Sinica, 2020, 40(6):1029-1038.
doi: 10.13249/j.cnki.sgs.2020.06.019
[12] Dai M, Huang S, Huang Q, et al. Propagation characteristics and mechanism from meteorological to agricultural drought in various seasons[J]. Journal of Hydrology, 2022,610:127897.
[13] 吕振涛, 李生宇, 彭中敏, 等. 蒙古国植被对干旱响应的敏感性研究[J]. 地理研究, 2021, 40(11):3016-3028.
doi: 10.11821/dlyj020210105
Lyu Z T, Li S Y, Peng Z M, et al. Sensitivity of vegetation responses to drought in Mongolia[J]. Geographical Research, 2021, 40(11):3016-3028.
[14] Zhao A, Yu Q, Feng L, et al. Evaluating the cumulative and time-lag effects of drought on grassland vegetation:A case study in the Chinese Loess Plateau[J]. Journal of Environmental Management, 2020,261:110214.
[15] Han Z, Huang Q, Huang S, et al. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment:Characteristics and potential influencing factors[J]. Agricultural Water Management, 2021,244:106540.
[16] 刘立文, 段永红, 徐立帅, 等. 山西省农业干旱时空变化特征[J]. 灌溉排水学报, 2020, 39(2):114-121.
Liu L W, Duan Y H, Xu L S, et al. Characteristics of drought spatio-temporal transformation in Shanxi Province[J]. Journal of Irrigation and Drainage, 2020, 39(2):114-121.
[17] 袁瑞强, 龙西亭, 王鹏, 等. 山西省降水量时空变化及预测[J]. 自然资源学报, 2015, 30(4):651-663.
Yuan R Q, Long X T, Wang P, et al. Tempo-spatial variation and forecast of precipitation in Shanxi Province[J]. Journal of Natural Resources, 2015, 30(4):651-663.
doi: 10.11849/zrzyxb.2015.04.011
[18] Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11):1417-1434.
[19] Cao S, Zhang L, He Y, et al. Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China[J]. Science of the Total Environment, 2022,821:153270.
[20] 刘远, 周买春. 3种IGBP分类系统的土地覆盖数据在韩江流域的对比分析[J]. 遥感技术与应用, 2017, 32(3):575-584.
doi: 10.11873/j.issn.1004-0323.2017.3.0575
Liu Y, Zhou M C. Comparative analysis on three land cover datasets based on IGBP classification system over Hanjiang River basin[J]. Remote Sensing Technology and Application, 2017, 32(3):575-584.
[21] McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]// Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society,1993:179-183.
[22] Svoboda M, Fuchs B A. Handbook of drought indicators and indices[M]. Switzerland: World Meteorological Organization Geneva,2016:13-14.
[23] Ma L, Huang Q, Huang S, et al. Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales[J]. Hydrology Research, 2022, 53(1):193-205.
[24] Zhou Z, Liu S, Ding Y, et al. Assessing the responses of vegetation to meteorological drought and its influencing factors with partial wavelet coherence analysis[J]. Journal of Environmental Management, 2022,311:114879.
[25] Han Z, Huang S, Huang Q, et al. Propagation dynamics from meteorological to groundwater drought and their possible influence factors[J]. Journal of Hydrology, 2019,578:124102.
[26] 吕纯月. 基于SPI指数的中国夏季干旱区域性特征及环流异常研究[D]. 南京: 南京信息工程大学, 2021.
Lyu C Y. Study on regional characteristics and circulation anomalies of summer drought in China based on SPI index[D]. Nanjing: Nanjing University of Information Science & Technology, 2021.
[27] 马景钊, 郝璐. 基于SPI和SPEI指数的锡林郭勒草原干旱时空变化特征[J]. 草业科学, 2021, 38(12):2327-2339.
Ma J Z, Hao L. Temporal and spatial variation of drought in the Xilingol grassland based on the standardized precipitation index and standardized precipitation evapotranspiration index[J]. Pratacultural Science, 2021, 38(12):2327-2339.
[28] Kogan F N. Application of vegetation index and brightness temperature for drought detection[J]. Advances in Space Research, 1995, 15(11):91-100.
[29] Li W, Wang Y, Yang J. Cloudy region drought index (CRDI) based on long-time-series cloud optical thickness (COT) and vegetation conditions index (VCI):A case study in Guangdong,south eastern China[J]. Remote Sensing, 2020, 12(21):3641.
[30] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[31] 李文武, 石强, 王凯, 等. 基于变分模态分解和深度门控网络的径流预测[J]. 水力发电学报, 2020, 39(3):34-44.
Li W W, Shi Q, Wang K, et al. Runoff prediction based on variational mode decomposition and deep gated network[J]. Journal of Hydroelectric Engineering, 2020, 39(3):34-44.
[32] 吴文轩, 王志坚, 张纪平, 等. 基于峭度的VMD分解中k值的确定方法研究[J]. 机械传动, 2018, 42(8):153-157.
doi: 10.16578/j.issn.1004.2539.2018.08.030
Wu W X, Wang Z J, Zhang J P, et al. Research of the method of determining k value in VMD based on kurtosis[J]. Journal of Mechanical Transmission, 2018, 42(8):153-157.
[33] 邢愿. 基于不同时间尺度的贵州省农业干旱对气象干旱的响应机制[D]. 贵阳: 贵州师范大学, 2021.
Xing Y. Response mechanism of agricultural drought to meteorological drought based on different time scales in Guizhou Province[D]. Guiyang: Guizhou Normal University, 2021.
[34] 丁一汇, 司东, 柳艳菊, 等. 论东亚夏季风的特征、驱动力与年代际变化[J]. 大气科学, 2018, 42(3):533-558.
Ding Y H, Si D, Liu Y J, et al. On the characteristics,driving forces and inter-decadal variability of the East Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3):533-558.
[35] 晏利斌. 1961—2014年黄土高原气温和降水变化趋势[J]. 地球环境学报, 2015, 6(5):276-282.
Yan L B. Characteristics of temperature and precipitation on the Loess Plateau from 1961 to 2014[J]. Journal of Earth Environment, 2015, 6(5):276-282.
[36] 侯青青, 裴婷婷, 陈英, 等. 1986—2019年黄土高原干旱变化特征及趋势[J]. 应用生态学报, 2021, 32(2):649-660.
doi: 10.13287/j.1001-9332.202102.012
Hou Q Q, Pei T T, Chen Y, et al. Variations of drought and its trend in the Loess Plateau from 1986 to 2019[J]. Chinese Journal of Applied Ecology, 2021, 32(2):649-660.
[37] 安彬, 肖薇薇, 朱妮, 等. 近60 a黄土高原地区降水集中度与集中期时空变化特征[J]. 干旱区研究, 2022, 39(5):1333-1344.
doi: 10.13866/j.azr.2022.05.01
An B, Xiao W W, Zhu N, et al. Temporal and spatial variations of precipitation concentration degree and precipitation concentration period on the Loess Plateau from 1960 to 2019[J]. Arid Zone Research, 2022, 39(5):1333-1344.
doi: 10.13866/j.azr.2022.05.01
[38] 薛少博, 李鹏, 于坤霞, 等. 2002—2020年黄土高原土壤水变化及其相关性分析[J]. 水土保持学报, 2021, 35(5):221-226.
Xue S B, Li P, Yu K X, et al. Soil water change and its correlation analysis in the Loess Plateau from 2002 to 2020[J]. Journal of Soil and Water Conservation, 2021, 35(5):221-226.
[39] 史尚渝, 王飞, 金凯, 等. 黄土高原地区植被指数对干旱变化的响应[J]. 干旱气象, 2020, 38(1):1-13.
Shi S Y, Wang F, Jin K, et al. Response of vegetation index to meteorological drought over loess plateau[J]. Journal of Arid Meteorology, 2020, 38(1):1-13.
[40] 王一, 郝利娜, 许强, 等. 2001—2019年黄土高原植被覆盖度时空演化特征及地理因子解析[J]. 生态学报, 2023, 43(6):2397-2407.
Wang Y, Hao L N, Xu Q, et al. Spatio-temporal variations of vegetation coverage and its geographical factors analysis on the Loess Plateau from 2001 to 2019[J]. Acta Ecologica Sinica, 2023, 43(6):2397-2407.
[41] 付建新. 山西黄河流域不同土地利用类型NDVI时空变化及其对气温、降水的响应[J]. 水土保持研究, 2023, 30(3):364-372.
Fu J X. Temporal and spatial changes of NDVI of different land covers and their responses to temperature and precipitation in the Yellow River basin of Shanxi[J]. Research of Soil and Water Conservation, 2023, 30(3):364-372.
[42] 尉毓姣, 朱琳, 曹鑫宇, 等. 基于转移函数分析的蒙东地区不同类型植被变化对干旱的响应[J]. 地球科学, 2023, 48(9):3539-3551.
Wei Y J, Zhu L, Cao X Y, et al. Response of different types of vegetation changes to drought in eastern inner Mongolia based on transfer function analysis[J]. Earth Science, 2023, 48(9):3539-3551.
[43] 吴林霖, 王思远, 马元旭, 等. 中亚地区植被对气候变化的响应机制初探[J]. 遥感学报, 2022, 26(11):2248-2267.
Wu L L, Wang S Y, Ma Y X, et al. Response of vegetation to climate change in Central Asia with remote sensing and meteorological data[J]. National Remote Sensing Bulletin, 2022, 26(11):2248-2267.
[1] 赖仕久, 胡晋山, 康建荣, 王小兵. 煤炭资源型区域生态环境演变研究——以山西省为例[J]. 自然资源遥感, 2024, 36(4): 62-74.
[2] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[3] 晏红波, 韦晚秋, 卢献健, 黄俞惠. 基于TRMM数据与SPI指数的广西地区旱涝演变分析[J]. 国土资源遥感, 2021, 33(1): 158-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发