Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 188-194    DOI: 10.6046/zrzyyg.2023229
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
绿洲城市土壤砷含量高光谱估算
钟晴1(), 麦麦提吐尔逊·艾则孜1,2(), 米热古力·艾尼瓦尔1, 郝海宇3
1.新疆师范大学地理科学与旅游学院,乌鲁木齐 830054
2.新疆师范大学新疆干旱区湖泊环境与资源实验室,乌鲁木齐 830054
3.新疆师范大学物理与电子工程学院,乌鲁木齐 830054
Hyperspectral inversion of arsenic content in soil in an oasis city
ZHONG Qing1(), MAMATTURSUN Eziz1,2(), MIREGULI Ainiwaer1, HAO Haiyu3
1. College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
2. Xinjiang Laboratory of Lake Environment and Resources, Xinjiang Normal University, Urumqi 830054, China
3. College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
全文: PDF(2854 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 砷(As)是具有强致癌性的类金属元素,快速、准确地监测土壤中As元素含量尤为重要。首先,以乌鲁木齐市表层土壤为研究对象,采集84组土壤样品,并测定其As含量和原始光谱反射率,用Pearson相关分析对土壤原始光谱及12种光谱变换下的光谱反射率与土壤As含量之间的关系进行检验,筛选出特征波段; 然后,基于偏最小二乘回归(partial least squares regression,PLSR)、随机森林回归(random forest regression,RFR)以及支持向量机回归(support vector machine regression,SVMR),构建As含量高光谱反演模型; 最后,选取决定系数R2、均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)来评估高光谱模型的反演预测能力。结果表明: 对原始光谱数据进行微分变换能够有效增强光谱特征,提高土壤光谱反射率与As含量之间的相关性。3种模型的反演预测能力由高到低依次为: RFR>SVMR>PLSR,其中,基于均方根二阶微分的RFR模型R2为0.821,RMSE为0.143 mg/kg,MAE为0.523 mg/kg,模型拟合效果最好,具有较高的稳定性和预测精度。研究可为构建绿洲城市土壤As含量高光谱反演模型提供科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟晴
麦麦提吐尔逊·艾则孜
米热古力·艾尼瓦尔
郝海宇
关键词 城市土壤高光谱反演光谱变换反演模型    
Abstract

Arsenic (As) is a metalloid element with high carcinogenicity, rendering it particularly important to detect As content in soils in a swift and accurate manner. The study focused on the topsoil in Urumqi City, where 84 soil samples were collected and tested for their As content and original spectral reflectance. This study examined the relationships of As content in the soils with the spectral reflectance under the original spectra and 12 spectral transformations using the Pearson correlation analysis, followed by screening characteristic bands. Hyperspectral models for the inversion of As content in soils were developed using partial least squares regression (PLSR), random forest regression (RFR), and support vector machine regression (SVMR). Finally, the prediction performance of the hyperspectral models was elevated based on the coefficients of determination (R2), root-mean-square errors (RMSEs), and mean absolute errors (MAEs). The results indicated that applying differential transformations to the original spectral data can effectively enhance the spectral features and improve the correlation between spectral reflectance and As content in soils. The prediction performance of the hyperspectral models decreased in the order of RFR, SVMR, and PLSR. The RFR model based on root-mean-square second order differentiation (RMSSD-RFR) exhibited the best fitting effects and the highest prediction stability, with R2 of 0.821, a RMSE of 0.143 mg/kg, and a MAE of 0.523 mg/kg. This study provides a scientific basis for developing hyperspectral models for the inversion of As content in soils in an oasis city.

Key wordsurban soil    As    hyperspectral inversion    spectral transformation    inversion model
收稿日期: 2023-07-24      出版日期: 2025-02-17
ZTFLH:  TP79  
  X833  
基金资助:国家自然科学基金项目“绿洲地下水重金属污染风险防控理论与技术研究”(U2003301)
通讯作者: 麦麦提吐尔逊·艾则孜(1981-),男,博士,教授,主要从事绿洲生态环境演变研究。Email: oasiseco@126.com
作者简介: 钟 晴(1998-),女,硕士研究生,主要从事绿洲土壤环境安全研究。Email: 13235366308@163.com
引用本文:   
钟晴, 麦麦提吐尔逊·艾则孜, 米热古力·艾尼瓦尔, 郝海宇. 绿洲城市土壤砷含量高光谱估算[J]. 自然资源遥感, 2025, 37(1): 188-194.
ZHONG Qing, MAMATTURSUN Eziz, MIREGULI Ainiwaer, HAO Haiyu. Hyperspectral inversion of arsenic content in soil in an oasis city. Remote Sensing for Natural Resources, 2025, 37(1): 188-194.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023229      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/188
Fig.1  研究区位置及采样点分布
Fig.2  原始和Savitzky-Golay平滑处理后的光谱反射率曲线
组别 样品数 范围/(mg·kg-1) 平均值/(mg·kg-1) 标准差/(mg·kg-1) 变异系数 土壤背景值/(mg·kg-1)
全部 84 6.00~13.80 10.28 1.32 0.13 11.20
校准集 64 6.84~13.80 10.30 1.25 0.12
验证集 20 6.00~11.80 10.07 1.47 0.15
Tab.1  各数据集As含量描述性统计
Fig.3  土壤As含量与光谱反射率及其变换的相关系数
光谱变换 RFR PLSR SVMR
R2 RMSE/
(mg·kg-1)
MAE/
(mg·kg-1)
R2 RMSE/
(mg·kg-1)
MAE/
(mg·kg-1)
R2 RMSE/
(mg·kg-1)
MAE/
(mg·kg-1)
R 0.604 0.280 0.802 0.555 0.240 0.798 0.697 0.107 0.894
FD 0.644 0.134 0.748 0.646 0.159 0.832 0.459 0.031 1.008
SD 0.678 0.230 0.652 0.653 0.170 0.807 0.231 0.029 1.051
RTFD 0.575 0.130 0.780 0.646 0.157 0.829 0.614 0.034 0.968
RTSD 0.626 0.183 0.739 0.632 0.168 0.828 0.277 0.031 1.040
LTFD 0.626 0.163 0.768 0.657 0.163 0.819 0.585 0.036 0.982
LTSD 0.669 0.208 0.692 0.623 0.165 0.843 0.177 0.029 1.059
RMSFD 0.641 0.121 0.769 0.646 0.163 0.828 0.541 0.036 0.991
RMSSD 0.821 0.143 0.523 0.588 0.181 0.852 0.252 0.031 1.049
ATFD 0.605 0.168 0.775 0.657 0.163 0.819 0.585 0.036 0.982
ATSD 0.679 0.219 0.720 0.623 0.165 0.843 0.177 0.029 1.059
RLFD 0.591 0.154 0.777 0.556 0.280 0.804 0.334 0.031 1.037
RLSD 0.710 0.219 0.680 0.498 0.208 0.886 0.209 0.031 1.054
Tab.2  反演模型精度参数统计
Fig.4  实测值与模型预测值比较
[1] 郭学飞, 曹颖, 焦润成, 等. 基于高光谱的北京铁矿区土壤重金属镍元素含量反演研究[J]. 土壤通报, 2021, 52(4):960-967.
Guo X F, Cao Y, Jiao R C, et al. An inversion of soil nickel contents with hyperspectral in iron mine area of Beijing[J]. Chinese Journal of Soil Science, 2021, 52(4):960-967.
[2] 温其谦, 阎秀兰, 申俊峰, 等. 半壁山金矿矿业活动区砷赋存的矿物特征及其对农田土壤砷累积的影响[J]. 环境科学, 2019, 40(11):5090-5097.
Wen Q Q, Yan X L, Shen J F, et al. Mineral characteristics of arsenic in the active area of the Banbishan gold mine and its effect on arsenic accumulation in farmland soil[J]. Environmental Science, 2019, 40(11):5090-5097.
[3] 邵金秋, 温其谦, 阎秀兰, 等. 天然含铁矿物对砷的吸附效果及机制[J]. 环境科学, 2019, 40(9):4072-4080.
Shao J Q, Wen Q Q, Yan X L, et al. Adsorption and mechanism of arsenic by natural iron-containing minerals[J]. Environmental Science, 2019, 40(9):4072-4080.
[4] 贺军亮, 张淑媛, 查勇, 等. 高光谱遥感反演土壤重金属含量研究进展[J]. 遥感技术与应用, 2015, 30(3):407-412.
doi: 10.11873/j.issn.1004\|0323.2015.3.0407
He J L, Zhang S Y, Zha Y, et al. Review of retrieving soil heavy metal content by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2015, 30(3):407-412.
[5] Tan K, Wang H M, Chen L H, et al. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest[J]. Journal of Hazardous Materials, 2020,382:120987.
[6] 晏红波, 韦晚秋, 卢献健, 等. 基于高光谱特征的土壤含水量遥感反演方法综述[J]. 自然资源遥感, 2022, 34(2):1-9.doi:10.6046/zrzyyg.2021126.
Yan H B, Wei W Q, Lu X J, et al. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2):1-9.doi:10.6046/zrzyyg.2021126.
[7] Sawut R, Kasim N, Abliz A, et al. Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area[J]. International Journal of Applied Earth Observation and Geoinformation, 2018,73:14-25.
[8] 王嘉芃, 徐建国, 沈家晓, 等. 德兴铜矿矿山重金属污染修复效果高光谱遥感评价[J]. 自然资源遥感, 2023, 35(3):284-291.doi:10.6046/zrzyyg.2022196.
Wang J P, Xu J G, Shen J X, et al. Evaluating the remediation effect of heavy metal pollution in the Dexing copper mine based on hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(3):284-291.doi:10.6046/zrzyyg.2022196.
[9] 杨君怡, 钱乐祥, 郑艳伟, 等. 基于高光谱的土壤砷和铜元素含量估算[J]. 科技通报, 2018, 34(11):112-119,124.
Yang J Y, Qian L X, Zheng Y W, et al. Estimation of the content of arsenic and copper in soil based on hyperspectral data[J]. Bulletin of Science and Technology, 2018, 34(11):112-119,124.
[10] 郑光辉, 周生路, 吴绍华. 土壤砷含量高光谱估算模型研究[J]. 光谱学与光谱分析, 2011, 31(1):173-176.
Zheng G H, Zhou S L, Wu S H. Prediction of As in soil with reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(1):173-176.
[11] 李志远, 邓帆, 贺军亮, 等. 土壤重金属砷的高光谱估算模型[J]. 光谱学与光谱分析, 2021, 41(9):2872-2878.
Li Z Y, Deng F, He J L, et al. Hyperspectral estimation model of heavy metal arsenic in soil[J]. Spectroscopy and Spectral Analysis, 2021, 41(9):2872-2878.
[12] 王泽强, 张冬有, 徐夕博, 等. 基于遥感时-空-谱特征及随机森林模型的土壤重金属空间分布预测[J]. 环境科学, 2024, 45(3):1713-1723.
Wang Z Q, Zhang D Y, Xu X B, et al. Distribution prediction of soil heavy metals based on remote sensing temporal-spatial-spectral features and random forest model[J]. Environmental Science, 2024, 45(3):1713-1723.
[13] 史广, 刘庚, 赵龙, 等. 基于多源环境数据和随机森林模型的农田土壤砷空间分布模拟[J]. 环境科学学报, 2020, 40(8):2993-3000.
Shi G, Liu G, Zhao L, et al. Prediction of arsenic for farmland soil based on multi source environmental data and random forest model[J]. Acta Scientiae Circumstantiae, 2020, 40(8):2993-3000.
[14] 袁自然, 魏立飞, 张杨熙, 等. 优化CARS结合PSO-SVM算法农田土壤重金属砷含量高光谱反演分析[J]. 光谱学与光谱分析, 2020, 40(2):567-573.
Yuan Z R, Wei L F, Zhang Y X, et al. Hyperspectral inversion and analysis of heavy metal arsenic content in farmland soil based on optimizing CARS combined with PSO-SVM algorithm[J]. Spectroscopy and Spectral Analysis, 2020, 40(2):567-573.
[15] 易兴松, 兰安军, 文锡梅, 等. 基于ASD和GaiaSky-mini的农田土壤重金属污染监测[J]. 生态学杂志, 2018, 37(6):1781-1788.
Yi X S, Lan A J, Wen X M, et al. Monitoring of heavy metals in farmland soils based on ASD and GaiaSky-mini[J]. Chinese Journal of Ecology, 2018, 37(6):1781-1788.
[16] 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提. 新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警[J]. 生态学报, 2018, 38(3):1075-1086.
Mamattursun E, Ajigul M, Anwar M. Soil heavy metal pollution and ecological risk warning assessment of pepper field in Yanqi Basin,Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(3):1075-1086.
[17] 安柏耸, 王雪梅, 黄晓宇, 等. 基于连续小波变换的土壤重金属镉含量的高光谱估测[J]. 地球与环境, 2023, 51(2):246-253.
An B S, Wang X M, Huang X Y, et al. Hyperspectral estimation of heavy metal cadmium content in soil based on continuous wavelet transform[J]. Earth and Environment, 2023, 51(2):246-253.
[18] Liu W W, Li M J, Zhang M Y, et al. Hyperspectral inversion of mercury in reed leaves under different levels of soil mercury contamination[J]. Environmental Science and Pollution Research International, 2020, 27(18):22935-22945.
doi: 10.1007/s11356-020-08807-z pmid: 32329007
[19] Leone A P, Viscarra-Rossel R A, Amenta P, et al. Prediction of soil properties with PLSR and vis-NIR spectroscopy:Application to Mediterranean soils from southern Italy[J]. Current Analytical Chemistry, 2012, 8(2):283-299.
[20] Wei L F, Pu H C, Wang Z X, et al. Estimation of soil arsenic content with hyperspectral remote sensing[J]. Sensors, 2020, 20(14):4056.
[21] 阿地拉·艾来提, 麦麦提吐尔逊·艾则孜, 靳万贵, 等. 新疆库尔勒市道路积尘重金属污染及健康风险评价[J]. 中国地质, 2020, 47(6):1915-1925.
Adila H, Mamattursun E, Jin W G, et al. Pollution and health risks assessment of heavy metals of road dust in Korla City,Xinjiang[J]. Geology in China, 2020, 47(6):1915-1925.
[22] 李全坤, 赵万伏, 文宇博, 等. 基于可见—近红外反射光谱的典型农田重金属污染风险分类研究[J]. 高校地质学报, 2022, 28(6):799-813.
Li Q K, Zhao W F, Wen Y B, et al. Classification of heavy metal contamination risk in typical agricultural soils by visible and near infrared reflectance spectroscopy[J]. Geological Journal of China Universities, 2022, 28(6):799-813.
[23] 郭云开, 张思爱, 谢晓峰, 等. 基于 GA-SVM 的耕地土壤重金属含量高光谱反演方法的研究[J]. 土壤通报, 2021, 52(4):968-974.
Guo Y K, Zhang S A, Xie X F, et al. The hyperspectral inversion method of heavy metal contents in cultivated soils based on GA-SVM[J]. Chinese Journal of Soil Science, 2021, 52(4):968-974.
[24] 阿依努尔·麦提努日, 麦麦提吐尔逊·艾则孜, 李新国. 基于地理加权回归模型的葡萄园土壤砷含量高光谱反演[J]. 环境监测管理与技术, 2021, 33(4):45-48.
Aynur M, Mamattursun E, Li X G. Hyperspectral inversion of arsenic content in vineyard soil based on geographically weighted regression model[J]. The Administration and Technique of Environmental Monitoring, 2021, 33(4):45-48.
[1] 骆振海, 张超, 冯绍元, 唐敏, 刘锐, 孔纪迎. 土壤盐渍化光学遥感监测方法研究进展[J]. 自然资源遥感, 2024, 36(4): 9-22.
[2] 易孜芳, 周磊磊, 骆检兰, 曹里. 高光谱反演耕地土壤质量评价元素含量方法研究[J]. 自然资源遥感, 2024, 36(3): 225-232.
[3] 贺军亮, 韩超山, 韦锐, 周智勇, 东启亮. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019, 31(4): 96-103.
[4] 徐奥, 马保东, 李兴春, 吴立新. 植物叶面铁尾矿粉尘光谱测试与定量反演实验[J]. 国土资源遥感, 2017, 29(1): 164-169.
[5] 胡丹娟, 蒋金豹, 陈绪慧, 李京. 基于改进的BP神经网络裸露地表土壤水分反演模型对比[J]. 国土资源遥感, 2016, 28(1): 72-77.
[6] 郭熙, 叶英聪, 谢碧裕, 匡丽花, 谢文. 南方丘陵稻田土碱解氮高光谱特征及反演模型研究[J]. 国土资源遥感, 2015, 27(2): 94-99.
[7] 李晓明, 王曙光, 韩霁昌. 基于PLSR的陕北土壤盐分高光谱反演[J]. 国土资源遥感, 2014, 26(3): 113-116.
[8] 熊攀, 朱利, 顾行发, 赵利民, 余涛, 孟庆岩, 李家国, 张峰. 基于HJ-1B星热红外数据的大亚湾海温反演模型及其应用[J]. 国土资源遥感, 2014, 26(1): 132-138.
[9] 张玲, 蒋金豹, 崔希民, 蔡庆空. 利用ANFIS方法反演裸土区土壤水分含量[J]. 国土资源遥感, 2013, 25(2): 63-68.
[10] 黄妙芬, 毛志华, 邢旭峰, 孙中平, 赵祖龙, 黄薇. HJ-1B/IRS水温反演模型及监测示范[J]. 国土资源遥感, 2011, 23(2): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发