Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 161-168    DOI: 10.6046/zrzyyg.2023241
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于SBAS InSAR技术的叙古高速沿线滑坡识别与监测
杨辰1,2(), 金源3(), 邓飞4, 史绪国3
1.中国地质科学院岩溶地质研究所/自然资源部广西岩溶动力学重点实验室,桂林 541004
2.联合国教科文组织国际岩溶研究中心/岩溶动力系统与全球变化国际联合研究中心,桂林 541004
3.中国地质大学(武汉)地理与信息工程学院,武汉 430078
4.广东省佛山地质局,佛山 528000
Detection and monitoring of landslides along the Xuyong-Gulin Expressway using SBAS InSAR
YANG Chen1,2(), JIN Yuan3(), DENG Fei4, SHI Xuguo3
1. Institute of Karst Geology, CAGS/ Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin 541004, China
2. International Research Centre on Karst under the Auspices of UNESCO/National Center for International Research on Karst Dynamic System and Global Change, Guilin 541004, China
3. School of Geography and Information Engineering, China University of Geosciences(Wuhan), Wuhan 430078, China
4. Bureau of Foshan Geological Survey, Guangdong Province, Foshan 528000, China
全文: PDF(8367 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

叙永—古蔺高速公路(叙古高速)位于四川盆地南缘,线路周边地质条件复杂,其安全运营受到地质灾害威胁,因此,叙古高速沿线地质灾害的识别分析具有十分重要的意义。合成孔径雷达干涉测量(interferometric synthe-tic aperture Radar,InSAR)技术具有全天时全天候、覆盖范围大和毫米级地表形变监测的优势,在广域滑坡识别监测中发挥了重要作用。基于此,采用小基线集(small baseline subset,SBAS)InSAR技术对2017年2月—2020年9月Sentinel-1升降轨数据集进行处理分析,获取叙古高速沿线地表形变速率,共探测到包括集美滑坡等在内的18处滑坡体,分析发现滑坡形变主要与人为活动相关。结果同时表明,升降轨数据结合有助于更准确地识别灾害点分布。随着数据的积累与技术的不断发展,InSAR技术可以在地质灾害防治中发挥越来越重要的作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨辰
金源
邓飞
史绪国
关键词 滑坡探测合成孔径雷达干涉测量叙古高速小基线数据集    
Abstract

The Xuyong-Gulin (Xugu) Expressway, located along the southern margin of the Sichuan Basin, faces complex geological conditions, with its safe operation threatened by geologic hazards. Therefore, the identification and analysis of geologic hazards along the expressway holds great significance. Interferometric synthetic aperture Radar (InSAR) technique enjoys the advantages of all-weather, all-time observation capabilities, wide coverage, and mm-scale surface deformation monitoring, playing an important role in wide-field landslide detection and monitoring. Based on this, this study processed the Sentinel-1 ascending and descending datasets from February 2017 to September 2020 using the small baselines subset (SBAS) InSAR technique. As a result, the surface deformation rates along the expressway were determined, and 18 landslides were identified. The analysis indicates that the deformations of landslides are related to anthropogenic activities. The analytical results also reveal that the combination of ascending and descending datasets allows for more accurate identification of landslide distribution. With the continuous data accumulation and technological development, InSAR is expected to play an increasingly important role in the prevention and control of geologic disasters.

Key wordslandslide detection    interferometric synthetic aperture Radar    Xugu Expressway    small baseline subset
收稿日期: 2023-08-02      出版日期: 2025-02-17
ZTFLH:  TP79  
  P236  
基金资助:中国地质调查局地质调查项目“云平台地质调查岩溶所节点运行维护与网络安全保障”(DD20230720);中国地质科学院岩溶地质研究所基本科研业务费重大项目“岩溶地质数据集成管理与共享服务系统”(2021004)
通讯作者: 金 源(1999-),男,硕士研究生,主要从事星载雷达干涉测量方法与应用研究。Email: jyuan@cug.edu.cn
作者简介: 杨 辰(1989-),男,硕士,高级工程师,主要从事岩溶地质信息化、岩溶区地质灾害识别监测。Email: ychen@mail.cgs.gov.cn
引用本文:   
杨辰, 金源, 邓飞, 史绪国. 基于SBAS InSAR技术的叙古高速沿线滑坡识别与监测[J]. 自然资源遥感, 2025, 37(1): 161-168.
YANG Chen, JIN Yuan, DENG Fei, SHI Xuguo. Detection and monitoring of landslides along the Xuyong-Gulin Expressway using SBAS InSAR. Remote Sensing for Natural Resources, 2025, 37(1): 161-168.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023241      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/161
Fig.1  研究区示意图
轨道方向 升轨 降轨
轨道号 55 164
方位角/(°) -12.6 -167.5
入射角/(°) 33.3 31.6
影像数量/景 107 108
时间跨度 2017-02-07—
2020-09-19
2017-02-26—
2020-09-26
参考影像日期 2018-12-23 2018-12-18
Tab.1  Sentinel-1数据基本信息
Fig.2  干涉对组合
Fig.3  研究区形变速率
Fig.4  InSAR识别结果与光学影像对比
Fig.5  集美隧道滑坡形变速率
Fig.6  集美隧道滑坡P1点时序形变结果
Fig.7  凤凰村滑坡形变速率
Fig.8  凤凰村P2点时序形变结果
Fig.9  客运站滑坡形变速率
Fig.10  客运站滑坡P3点时序形变结果
Fig.11  官嘴地与小坪子滑坡形变速率
Fig.12  官嘴地P4点与小坪子P5点时序形变结果
[1] 郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法——以新铺滑坡为例[J]. 测绘学报, 2022, 51(10):2171-2182.
doi: 10.11947/j.AGCS.2022.20220298
Guo A Q, Hu J, Zheng W J, et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR:A case study of Xinpu landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2171-2182.
[2] 孙倩. 多时相和多平台InSAR滑坡监测研究[J]. 地理与地理信息科学, 2018, 34(1):127.
Sun Q. 多基线、多时相和多平台InSAR滑坡监测研究[J]. Geography and Geo-Information Science, 2018, 34(1):127.
[3] 中国地质调查. 2020年全国地质灾害灾情及2021年趋势预测[EB/OL].(2021-01-14)[2023-11-03].https://mp.weixin.qq.com/s?__biz=MzUzNjA0NTkzNg==&mid=2247501863&idx=2&sn=6e5ccbb29e28a88dc69f35b29b9590b0&chksm=fafeb838cd89312e140bd2c2070f4f864eca1d90e0080 dd7c4ad19bb35ae14d9415236eebb3c&scene=27.
Geological Survey of China. National geological hazard disasters in 2020 and trend forecast for 2021[EB/OL].(2021-01-14)[2023-11-03].https://mp.weixin.qq.com/s?__biz=MzUzNjA0NTkzNg==&mid=2247501863&idx=2&sn=6e5ccbb29e28a88dc69f35b29b9590b0&chksm=fafeb838cd89312e140bd2c2070f4f864eca1d90e0080 dd7c4ad19bb35ae14d9415236eebb3c&scene=27.
[4] 自然资源部. 2021年全国地质灾害灾情及2022年地质灾害趋势预测[EB/OL].(2022-01-13)[2023-11-03].http://news.mnr.gov.cn/dt/ywbb/202201/t20220113_2717375.html.
Ministry of Natural Resources. National geological hazard disasters in 2021 and forecast of geological hazard trends in 2022[EB/OL].(2022-01-13)[2023-11-03].http://news.mnr.gov.cn/dt/ywbb/202201/t20220113_2717375.html.
[5] 徐淑梅, 肖琳, 李程程, 等. 我国两种典型地质灾害区划技术发展现状述评[J]. 自然灾害学报, 2017, 26(2):22-31.
Xu S M, Xiao L, Li C C, et al. Status review on two kinds of typical geological hazard zoning techniques in China[J]. Journal of Natural Disasters, 2017, 26(2):22-31.
[6] 李海洋, 聂桂根. 西山村大型滑坡体GPS监测数据处理与预测模型建立[J]. 测绘地理信息, 2019, 44(6):117-119.
Li H Y, Nie G G. Coordinate model analysis of GPS monitoring for large landslide in Xishan Village[J]. Journal of Geomatics, 2019, 44(6):117-119.
[7] 王庆国, 赵海, 李健平. 地面激光点云与航空影像相结合的滑坡监测[J]. 测绘通报, 2019(4):99-102.
doi: 10.13474/j.cnki.11-2246.2019.0122
Wang Q G, Zhao H, Li J P. Landslide monitoring by merging ground laser point cloud and aerial image[J]. Bulletin of Surveying and Mapping, 2019(4):99-102.
doi: 10.13474/j.cnki.11-2246.2019.0122
[8] 赵瑞英. 三维激光扫描技术在滑坡检测中的应用研究[D]. 兰州: 兰州交通大学, 2017.
Zhao R Y. Research about 3D laser scanning technology in landslide monitoring[D]. Lanzhou: Lanzhou Jiaotong University, 2017.
[9] Qu T, Xu Q, Liu C, et al. Radar remote sensing applications in landslide monitoring with multi-platform InSAR observations:A case study from China[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2019,XLII-2/W13:1939-1943.
[10] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[11] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[C]//IEEE 1999 International Geoscience and Remote Sensing Symposium(IGARSS). IEEE,2002:1528-1530.
[12] Hooper A, Segall P, Zebker H. Persistent scatterer interferometric synthetic aperture Radar for crustal deformation analysis,with application to Volcán Alcedo,Galápagos[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07407.
[13] 代聪, 李为乐, 陆会燕, 等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版), 2021, 46(7):994-1002.
Dai C, Li W L, Lu H Y, et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):994-1002.
[14] 石固林, 徐浪, 张璇钰, 等. 西山村滑坡时序形变的SBAS-InSAR监测[J]. 测绘科学, 2021, 46(2):93-98,105.
Shi G L, Xu L, Zhang X Y, et al. Monitoring time series deformation of Xishancun landslide with SBAS-InSAR[J]. Science of Surveying and Mapping, 2021, 46(2):93-98,105.
[15] Wang Z F, Shi F G, Li D D, et al. Tunneling-induced deep-seated landslides:A case study in Gulin County,Sichuan,China[J]. Arabian Journal of Geosciences, 2020, 13(19):1039.
[16] 温鑫, 范宣梅, 陈兰, 等. 基于信息量模型的地质灾害易发性评价:以川东南古蔺县为例[J]. 地质科技通报, 2022, 41(2):290-299.
Wen X, Fan X M, Chen L, et al. Susceptibility assessment of geo-logical disasters based on an information value model:A case of Gulin County in Southeast Sichuan[J]. Bulletin of Geological Science and Technology, 2022, 41(2):290-299.
[17] Hooper A, Zebker H A. Phase unwrapping in three dimensions with application to InSAR time series[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2007, 24(9):2737-2747.
pmid: 17767243
[18] 易邦进, 黄成, 傅涛, 等. 基于SBAS-InSAR技术的中缅边境山区地质灾害隐患探测[J]. 自然资源遥感, 2023, 35(4):186-191.doi:10.6046/zrzyyg.2022261.
Yi B J, Huang C, Fu T, et al. Detecting potential geological hazards in mountainous area close to the China-Myanmar border using time series InSAR technology[J]. Remote Sensing for Natural Resources, 2023, 35(4):186-191.doi:10.6046/zrzyyg.2022261.
[19] 泸州市交通运输局. 叙古高速公路集美隧道变形综合处治方案专家评审会在成都召开[EB/OL].(2016-01-14)[2023-11-03].https://jtj.luzhou.gov.cn/gzdt/jtxw/content_264526.
The Bureau of Communications and Transportation in Luzhou. XuGu expressway Jimei tunnel deformation comprehensive treatment plan expert review meeting held in Chengdu[EB/OL].(2016-01-14)[2023-11-03].https://jtj.luzhou.gov.cn/gzdt/jtxw/content_264526.
[1] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[2] 刘斌, 葛大庆, 李曼, 张玲, 王艳, 郭小方, 张晓博. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发