Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 204-212    DOI: 10.6046/zrzyyg.2023268
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于日光诱导叶绿素荧光的东北林区森林碳汇估算
赵子方(), 梁艾琳()
南京信息工程大学遥感与测绘工程学院,南京 210044
Estimating forest carbon sink in the forest region of Northeast China using solar-induced chlorophyll fluorescence
ZHAO Zifang(), LIANG Ailin()
School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(4869 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 森林碳汇是维持地球生态平衡和应对气候变化的重要因素。森林碳汇吸收大量二氧化碳并储存碳元素,有助于减缓气候变化,在全球碳循环中扮演着关键角色。同时,森林碳汇也提供了生物多样性保护、水资源调节和土壤保持等重要生态服务,因此对于森林碳汇的估算十分重要。该文选取我国东北林区为研究区域,基于日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)运用植被总初级生产力(gross primary productivity,GPP)作为中间变量来估算2011—2020年6—9月植被生长期的森林碳汇。结果显示: 东北林区森林碳汇与SIF在空间上存在较强相关性; 东北林区的SIF值和碳汇分布相似,长白山地区的碳汇能力较强,而大兴安岭地区的碳汇能力较弱; 在时间分布上,植被生长期的6—9月,碳汇能力总体呈先递增后递减的趋势。总的来说,利用SIF来估算碳汇在东北林区具有较高的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵子方
梁艾琳
关键词 森林碳汇SIFGPP    
Abstract

Forest carbon sink, an important factor in maintaining the ecological balance of the earth and coping with climate change, plays a key role in the global carbon cycle. It absorbs large amounts of carbon dioxide and stores carbon element, helping mitigate climate change. Additionally, forest carbon sink provides essential ecological services, such as biodiversity conservation, water resource regulation, and soil conservation. Therefore, the estimation of forest carbon sink is critical. Based on solar-induced chlorophyll fluorescence (SIF) and using the gross primary productivity (GPP) as an intermediate variable, this study estimated forest carbon sink in the forest region of Northeast China during the vegetation growth period (i.e., from June to September) between 2011 and 2020. The results reveal a strong spatial correlation between forest carbon sink and SIF in this region. The similar distributions of SIF values and carbon sink in the forest region of Northeast China indicate that the Changbai Mountains and the Da Hinggan Mountains had high and low carbon sink capacities, respectively. Over the vegetation growth period from June to September, the carbon sink capacity in the region showed a gradual upward trend initially, followed by a gradual downward trend. Overall, it is highly feasible to estimate carbon sink using SIF in the forest region of Northeast China.

Key wordsforest carbon sink    solar-induced chlorophyll fluorescence (SIF)    gross primary productivity (GPP)
收稿日期: 2023-09-01      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:江苏省基础研究计划(自然科学基金)青年基金项目“星载CO2-IPDA的高精度探测方法研究”(BK20190779);国家自然科学基金青年科学基金项目“基于星载多波长差分吸收激光雷达的二氧化碳高精度反演方法研究”(42001273)
通讯作者: 梁艾琳(1991-),女,博士,讲师,主要从事环境遥感领域研究。Email: ireneliang@nuist.edu.cn
作者简介: 赵子方(2000-),男,硕士研究生,主要从事测绘遥感与碳排放领域研究。Email: 1192624116 @qq.com
引用本文:   
赵子方, 梁艾琳. 基于日光诱导叶绿素荧光的东北林区森林碳汇估算[J]. 自然资源遥感, 2025, 37(1): 204-212.
ZHAO Zifang, LIANG Ailin. Estimating forest carbon sink in the forest region of Northeast China using solar-induced chlorophyll fluorescence. Remote Sensing for Natural Resources, 2025, 37(1): 204-212.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023268      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/204
Fig.1  东北林区森林区域
Fig.2  GPP采样前后对比
Fig.3  通量站GPP与对应GOSIF数据
Fig.4  各月GPP/SIF比值
Fig.5  各月份拟合系数
月份 2003年 2004年 2005年 2006年 2007年 2008年 2009年 2010年 平均
6月 646.72 531.34 553.64 691.06 582.78 646.25 641.01 501.61 559.30
7月 650.26 725.42 658.26 748.72 703.31 701.11 711.89 634.87 691.73
8月 757.39 745.63 726.14 836.85 768.28 660.30 774.13 749.51 727.28
9月 903.72 924.27 757.62 988.51 995.61 842.98 913.32 774.14 900.02
Tab.1  生长期拟合系数值
Fig.6  估算GPP与实测GPP散点图
Fig.7  拟合值与实测值散点图
Fig.8  东北林区碳汇模型结果示例
Fig.9  月碳汇平均值与SIF平均值
Fig.10  月碳汇量
Fig.11  各参数断面图
Fig.12  大、小兴安岭和长白山地区的碳汇平均值
Fig.13  碳汇相对误差
Fig.14  碳汇数据对比
[1] 毕君, 王超, 尤海舟. 基于温室气体清单的河北省森林碳汇量研究[J]. 生态科学, 2016, 35(4):113-118.
Bi J, Wang C, You H Z. Forest carbon sequestration estimation based on Greenhouse Gases Inventory in Hebei Province[J]. Ecological Science, 2016, 35(4):113-118.
[2] 吕富成, 马建勇, 曹云, 等. 基于FORCCHN模型的中国典型森林生态系统碳通量模拟[J]. 生态学报, 2022, 42(7):2810-2821.
Lyu F C, Ma J Y, Cao Y, et al. Carbon fluxes simulation of China’s typical forest ecosystem based on FORCCHN model[J]. Acta Ecologica Sinica, 2022, 42(7):2810-2821.
[3] 梅晓丹, 李丹, 王强, 等. 基于Biome-BGC模型的小兴安岭森林碳通量时空分析[J]. 测绘与空间地理信息, 2021, 44(11):7-10.
Mei X D, Li D, Wang Q, et al. Spatial-temporal analysis of forest carbon flux of in Xiaoxing’anling based on biome-BGC model[J]. Geomatics and Spatial Information Technology, 2021, 44(11):7-10.
[4] Magney T S, Bowling D R, Logan B A, et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(24):11640-11645.
doi: 10.1073/pnas.1900278116 pmid: 31138693
[5] Wang M, Zhang L. Synchronous changes of GPP and solar-induced chlorophyll fluorescence in a subtropical evergreen coniferous forest[J]. Plants, 2023, 12(11):2224.
[6] Frankenberg C, Fisher J B, Worden J, et al. New global observations of the terrestrial carbon cycle from GOSAT:Patterns of plant fluorescence with gross primary productivity[J]. Geophysical Research Letters, 2011, 38(17):L17706.
[7] Frankenberg C, O’dell C, Guanter L, et al. Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres:Implications for its retrieval and interferences with atmospheric CO2 retrievals[J]. Atmospheric Measurement Techniques, 2012, 5(8):2081-2094.
[8] Li X, Xiao J, He B, et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes:First global analysis based on OCO-2 and flux tower observations[J]. Global Change Biology, 2018, 24(9):3990-4008.
[9] 李月, 孙政国. 基于叶绿素荧光遥感监测的蒙古高原草地生产力时空动态分析[J]. 江苏农业科学, 2021, 49(13):219-226.
Li Y, Sun Z G. Temporal and spatial dynamic analysis of grassland productivity in Mongolian Plateau based on chlorophyll fluorescence remote sensing monitoring[J]. Jiangsu Agricultural Sciences, 2021, 49(13):219-226.
[10] 王雅楠, 韦瑾, 汤旭光, 等. 应用叶绿素荧光估算植被总初级生产力研究进展[J]. 遥感技术与应用, 2020, 35(5):975-989.
doi: 10.11873/j.issn.1004-0323.2020.5.0975
Wang Y N, Wei J, Tang X G, et al. Progress of using the chlorophyll fluorescence to estimate terrestrial gross primary production[J]. Remote Sensing Technology and Application, 2020, 35(5):975-989.
[11] Li X, Xiao J. A global,0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2,MODIS,and reanalysis data[J]. Remote Sensing, 2019, 11(5):517.
[12] 张心竹, 王鹤松, 延昊, 等. 2001—2018年中国总初级生产力时空变化的遥感研究[J]. 生态学报, 2021, 41(16):6351-6362.
Zhang X Z, Wang H S, Yan H, et al. Analysis of spatio-temporal changes of gross primary productivity in China from 2001 to 2018 based on Romote Sensing[J]. Acta Ecologica Sinica, 2021, 41(16):6351-6362.
[13] 谢鹏飞. 基于日光诱导叶绿素荧光的干旱遥感监测研究[D]. 合肥: 安徽农业大学, 2022.
Xie P F. Remote sensing monitoring of drought based on solar-induced chlorophyll fluorescence[D]. Hefei: Anhui Agricultural University, 2022.
[14] 安映荷, 张润卿, 刘文杰, 等. 海南岛橡胶林区域不同SIF产品的差异性分析及其对GPP估算的影响[J]. 热带生物学报, 2023, 14(4):412-423.
An Y H, Zhang R Q, Liu W J, et al. Analysis of different satellite-based SIF products of the rubber plantations in Hainan Island and their effects on GPP estimate[J]. Journal of Tropical Biology, 2023, 14(4):412-423.
[15] Liu J, Chen J M, Cihlar J, et al. Net primary productivity mapped for Canada at 1-km resolution[J]. Global Ecology and Biogeography, 2002, 11(2):115-129.
[16] 周敏. 基于叶绿素荧光的中国植被总初级生产力估算[D]. 兰州: 西北师范大学, 2021.
Zhou M. Estimation of gross primary production using sun-induced chlorophyll fluorescence in China[D]. Lanzhou: Northwest Normal University, 2021.
[17] 姜海梅, 叶昊天, 王若静, 等. 基于MODIS产品的生态系统呼吸模型在内蒙古半干旱草原的验证[J]. 北京大学学报(自然科学版), 2019, 55(6):1029-1037.
Jiang H M, Ye H T, Wang R J, et al. A validation study of MODIS-based ecosystem respiration model in a semi-arid grassland of Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(6):1029-1037.
[18] Gao Y, Yu G, Yan H, et al. A MODIS-based photosynthetic capacity model to estimate gross primary production in Northern China and the Tibetan Plateau[J]. Remote Sensing of Environment, 2014,148:108-118.
[19] Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3):315.
[20] 闫世琦, 赵正勇, 杨旗, 等. 基于有限样点和大尺度模型的区域土壤呼吸模型研究[J]. 土壤通报, 2021, 52(4):865-872.
Yan S Q, Zhao Z Y, Yang Q, et al. Regional soil respiration modelling based on the finite sample points and the large-scale model[J]. Chinese Journal of Soil Science, 2021, 52(4):865-872.
[21] 马芮. 基于模型—数据融合的中国区域碳水通量动态模拟及分析[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018.
Ma R. Dynamic simulation and analysis of carbon and water fluxes in China based on model-data fusion[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences), 2018.
[22] 韩艳凤, 江志红, 王冀, 等. 东北地区夏季降水时空变化特征[J]. 气象科技, 2005, 33(2):136-141.
Han Y F, Jiang Z H, Wang J, et al. Temporal and spatial characteristics of summer rainfall in Northeast China[J]. Meteorological Science and Technology, 2005, 33(2):136-141.
[23] 龚强, 汪宏宇, 王盘兴. 东北夏季降水的气候及异常特征分析[J]. 气象科技, 2006, 34(4):387-393.
Gong Q, Wang H Y, Wang P X. Analysis of climate and anomaly features of summer precipitation in Northeast China[J]. Meteorological Science and Technology, 2006, 34(4):387-393.
[24] 张雷. 近50年东北地区夏季降水变化特征[J]. 黑龙江农业科学, 2017(10):15-16,20.
Zhang L. Characteristics of summer precipitation variability in Northeast China in recent 50 years[J]. Heilongjiang Agricultural Sciences, 2017(10):15-16,20.
[1] 张萌生, 杨树文, 贾鑫, 臧丽日. 一种基于格网索引优化的遥感影像自动配准算法[J]. 国土资源遥感, 2021, 33(1): 123-128.
[2] 薛白, 付钰莹, 崔成玲, 宋艳茹, 赵世湖. 多重约束条件下的不同遥感影像匹配方法[J]. 国土资源遥感, 2020, 32(3): 49-54.
[3] 康晋洁, 戚浩平, 杨清华, 陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
[4] 叶发茂, 罗威, 苏燕飞, 赵旭青, 肖慧, 闵卫东. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019, 31(2): 32-37.
[5] 杜守基, 邹峥嵘, 张云生, 张明磊. L0级机载三线阵影像连接点自动提取[J]. 国土资源遥感, 2017, 29(1): 65-70.
[6] 李迁, 甘拯, 支晓栋, 刘玥, 王建超, 金鼎坚. 无人机近红外传感器数据匹配方法[J]. 国土资源遥感, 2017, 29(1): 86-91.
[7] 李孚煜, 叶发茂. 基于SIFT的遥感图像配准技术综述[J]. 国土资源遥感, 2016, 28(2): 14-20.
[8] 赵政, 凌霄, 孙长奎, 李勇志. 基于POS的无人机倾斜影像匹配方法[J]. 国土资源遥感, 2016, 28(1): 87-92.
[9] 耿娟, 何成龙, 刘宪鑫. 基于CSIFT特性的无人机影像匹配[J]. 国土资源遥感, 2016, 28(1): 93-100.
[10] 孙彬, 边辉, 王培忠. 基于势函数点分布调整的SIFT图像配准算法[J]. 国土资源遥感, 2015, 27(3): 36-41.
[11] 李伟峰, 周金强, 方圣辉. 基于改进Hausdorff距离的图像配准方法[J]. 国土资源遥感, 2014, 26(2): 93-98.
[12] 王晓华, 邓喀中, 杨化超. 集成互补不变特征的SAR影像自动配准[J]. 国土资源遥感, 2014, 26(1): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发