Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (1): 63-71    DOI: 10.6046/gtzyyg.2018.01.09
  本期目录 | 过刊浏览 | 高级检索 |
ENDSI增强型雪指数提取积雪研究
庞海洋1(), 孔祥生1(), 汪丽丽1, 钱永刚2
1.鲁东大学资源与环境工程学院,烟台 264025
2.中国科学院光电研究院定量遥感信息技术重点实验室,北京 100094
A study of the extraction of snow cover using nonlinear ENDSI model
Haiyang PANG1(), Xiangsheng KONG1(), Lili WANG1, Yonggang QIAN2
1. College of Resources and Environmental Engineering, Ludong University, YanTai 264025, China
2. Key Laboratory of Quantitative Remote Sensing Information Technology, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China
全文: PDF(1625 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

快速、准确、客观地提取积雪覆盖信息,获得积雪覆盖时空分布资料,是资源生态环境变化研究中的基本问题,卫星遥感技术为有效解决这个问题提供了技术支持。归一化差值雪指数(normalized difference snow index,NDSI)法利用积雪在绿光波段(0.53~0.59 μm)高反射和短波红外波段(1.57~1.65 μm)强吸收特征,可实现遥感自动提取积雪区。以Landsat8 OLI影像为数据源根据积雪的光谱特征,在加入波段B1(0.433~0.453 μm)和B2(0.450~0.515 μm)特征的基础上,运用提出的增强型雪指数(enhanced normalized difference snow index,ENDSI),从OLI影像上进行积雪自动提取。研究结果表明,对积雪厚度变化ENDSI敏感度强于NDSI; 在裸土、薄雪及厚雪区,随着积雪厚度的增加,ENDSI值变化幅度强于NDSI,能有效增大雪与非雪的差异; 当ENDSI阈值取0.3时,可以有效区分雪与非雪,提高积雪提取精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞海洋
孔祥生
汪丽丽
钱永刚
关键词 ENDSINDSI积雪Landsat8 OLI    
Abstract

Detecting snow cover information and snow space-time distribution quickly and accurately is a basic problem of ecological environment changes in the resources. Remote sensing technology effectively provides technical support for solving this problem. Normalized difference snow index (NDSI) is an important method for automatic extracting snow cover information using spectral features of snow, which have high reflection in the green band (0.53~0.59 μm) and strong absorption characteristics in short wave infrared band (1.57~1.65 μm). By using Landsat8 OLI images as the data source and according to the spectral characteristics of snow, the authors propose the enhanced normalized difference snow index (ENDSI) based on adding emissivity characteristics of snow in first band B1 (0.433~0.453 μm) and second band B2 (0.450~0.515 μm), and the utilization of this index to extract snow from OLI images. Simulation and case study results show the following characteristics: the sensitivity of ENDSI is stronger than that of NDSI for the snow thickness; with the increase of the thickness of snow, the change of ENDSI value is stronger than that of NDSI; ENDSI can effectively increase the difference between snow and non-snow; it is easy to extract snow from the image with 0.3 as ENDSI threshold and, in this way, snow extraction accuracy is improved.

Key wordsENDSI    NDSI    snow    Landsat8 OLI
收稿日期: 2016-08-27      出版日期: 2018-02-08
:  TP79  
基金资助:国家自然科学基金项目“高分热像数据和光谱数据的植被气孔导度反演机理研究”(编号: 41271342)和山东省高等学校科技计划项目“‘土法炼焦’等多种高温污染点源遥感自动提取方法及应用”(编号: J12LH01)共同资助
作者简介:

第一作者: 庞海洋(1991-),男,硕士研究生,主要从事遥感科学与技术的科研工作。Email:fuyunmeili@163.com

引用本文:   
庞海洋, 孔祥生, 汪丽丽, 钱永刚. ENDSI增强型雪指数提取积雪研究[J]. 国土资源遥感, 2018, 30(1): 63-71.
Haiyang PANG, Xiangsheng KONG, Lili WANG, Yonggang QIAN. A study of the extraction of snow cover using nonlinear ENDSI model. Remote Sensing for Land & Resources, 2018, 30(1): 63-71.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.01.09      或      https://www.gtzyyg.com/CN/Y2018/V30/I1/63
研究区编号 行列号 获取日期 成像时间 所属地区
1 119/34 2016年2月2日 2: 29: 38 山东半岛
2 122/30 2015年12月5日 2: 46: 40 内蒙古赤峰地区
3 134/33 2013年12月3日 4: 03: 31 甘肃张掖地区
4 135/38 2015年11月30日 4: 10: 13 西藏昌都地区
5 125/32 2015年2月25日 3: 05: 40 山西大同地区
Tab.1  研究区遥感数据源
Fig.1  研究区位置
Fig.2  研究区主要地物光谱曲线
Fig.3  ENDSI和 NDSI提取积雪像元总量及变化数量
Fig.4  研究区5中积雪和裸土光谱曲线
描述 公式 编号
积雪在短波红外波段反射率 ρsnowswir=1.571.65ρ(λ)Γ(λ)1.571.65Γ(λ)=0.15 (7)
裸土在短波红外波段反射率 ρsoilswir=1.571.65ρ(λ)Γ(λ)1.571.65Γ(λ)=0.25 (8)
积雪在可见光波段反射率 ρsnow=ρblue violet+ρblue+ρgreen=3ρgreen-0.1 (9)
裸土在可见光波段反射率 ρsoil=ρblue violet+ρblue+ρgreen=3ρgreen-0.06 (10)
积雪原始NDSI NDSIsnow=ρgreen-0.15ρgreen+0.15 (0.1≤ρgreen≤1) (11)
裸土原始NDSI NDSIsoil=ρgreen-0.25ρgreen+0.25 (0≤ρgreen≤0.15) (12)
积雪变换后的ENDSI ENDSIsnow=3ρgreen-0.1-3.7×0.153ρgreen-0.1+0.15 (0.1≤ρgreen≤1) (13)
裸土变换后的ENDSI ENDSIsoil=3ρgreen-0.06-3.7×0.253ρgreen-0.14+0.25 (0≤ρgreen≤0.15) (14)
Tab.2  ENDSI线性模拟公式
Fig.5  NDSI 和 NDSI 在绿光波段反射率的变化趋势(由特定值画出)
Fig.6  验证区ENDSI和NDSI积雪提取结果
方法 阈值 雪像元数/个 总像元/个 比例/%
ENDSI 0.3 2 602 267 41 564 191 6.260 8
NDSI 0.4 2 048 197 41 564 191 4.927 8
ENDSI-NDSI 554 217 41 564 191 1.333 4
NDSI-ENDSI 147 41 564 191 0.000 4
Tab.3  ENDSI和NDSI提取积雪像元统计
类别 非雪
191 466(0.49%) 1 856 800(70.13%)
非雪 38 725 070(99.51%) 790 823(29.87%)
总体精度: 97.636 7% Kappa=0.778 5
Tab.4  验证区监督分类与NDSI分类结果混淆矩阵
类别 非雪
406 070(1.04%) 2 196 266(82.95%)
非雪 38 510 466 (98.96%) 451 357(17.05%)
总体精度: 97.937 1% Kappa=0.825 7
Tab.5  验证区监督分类与ENDSI分类结果混淆矩阵
Fig.7  目视解译验证实例
[1] Jones H G,Pomeroy J W,Walker D A,et al.Snow Ecology:An Interdisciplinary Examination of Snow-covered Ecosystems[M].Cambridge:Cambridge University Press,2001.
[2] 白淑英,吴奇,史建桥,等.青藏高原积雪深度时空分布与地形的关系[J].国土资源遥感,2015,27(4):171-178.doi:10.6046/gtzyyg.2015.04.26.
Bai S Y,Wu Q,Shi J Q,et al.Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J].Remote Sensing for Land and Resources,2015,27(4):171-178.doi:10.6046/gtzyyg.2015.04.26.
[3] 郝晓华,王建,李弘毅.MODIS雪盖制图中NDSI阈值的检验——以祁连山中部山区为例[J].冰川冻土,2008,30(1):132-138.
Hao X H,Wang J,Li H Y.Evaluation of the NDSI threshold value in mapping snow cover of MODIS:A case study of snow in the Middle Qilian Mountains[J].Journal of Glaciology and Geocryology,2008,30(1):132-138.
[4] Xiao X M,Shen Z X,Qin X G.Assessing the potential of VEGETATION sensor data for mapping snow and ice cover:A normalized difference snow and ice index[J].International Journal of Remote Sensing,2001,22(13):2479-2487.
[5] 王国亚,毛炜峄,贺斌,等.新疆阿勒泰地区积雪变化特征及其对冻土的影响[J].冰川冻土,2012,34(6):1293-1300.
Wang G Y,Mao W Y,He B,et al.Changes in snow covers during 1961—2011 and its effects on frozen ground in Altay Region, Xinjiang[J].Journal of Glaciology and Geocryology,2012,34(6):1293-1300.
[6] Kour R,Patel N,Krishna A P.Assessment of relationship between snow cover characteristics(SGI and SCI) and snow cover indices(NDSI and S3)[J].Earth Science Informatics,2015,8(2):317-326.
[7] 于泓峰,张显峰.光学与微波遥感的新疆积雪覆盖变化分析[J].地球信息科学学报,2015,17(2):244-252.
Yu H F,Zhang X F.Retrieval and analysis of snow-covered days in Xinjiang based on optical and microwave remote sensing data[J].Journal of Geo-Information Science,2015,17(2):244-252.
[8] 纪鹏,郭华东,张露.近20年西昆仑地区冰川动态变化遥感研究[J].国土资源遥感,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17.
Ji P,Guo H D,Zhang L.Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years[J].Remote Sensing for Land and Resources,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17.
[9] 彦立利,王建.基于遥感的冰川信息提取方法研究进展[J].冰川冻土,2013,35(1):110-118.
Yan L L,Wang J.Study of extracting glacier information from remote sensing[J].Journal of Glaciology and Geocryology,2013,35(1):110-118.
[10] 惠凤鸣,田庆久,李英成,等.基于MODIS数据的雪情分析研究[J].遥感信息,2004,19(4):35-38.
Hui F M,Tian Q J,Li Y C,et al.Research on snow condition analysis based on MODIS data[J].Remote Sensing Information,2004,19(4):35-38.
[11] Hall D K,Riggs G A,Salomonson V V.Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J].Remote Sensing of Environment,1995,54(2):127-140.
[12] 赵军,付杰文,付鹏.雪盖指数法提取积雪范围信息的不确定性研究——以玛纳斯上游地区为例[J].遥感技术与应用,2014,29(2):293-299.
Zhao J,Fu J W,Fu P.Accuracy and uncertainty of snow information based on NDSI:A case study of upstream region of Manas River[J].Remote Sensing Technology and Application,2014,29(2):293-299.
[13] 陈文倩,丁建丽,孙永猛,等.基于NDSI-NDVI特征空间的积雪面积反演研究[J].冰川冻土,2015,37(4):1059-1066.
Chen W Q,Ding J L,Sun Y M,et al.Retrieval of snow cover area based on NDSI-NDVI feature space[J].Journal of Glaciology and Geocryology,2015,37(4):1059-1066.
[14] Satir O.Comparing the satellite image transformation techniques for detecting and monitoring the continuous snow cover and glacier in Cilo Mountain chain Turkey[J].Ecological Indicators,2016,69:261-268.
[15] 裴欢,房世峰,覃志豪,等.基于遥感的新疆北疆积雪盖度及雪深监测[J].自然灾害学报,2008,17(5):52-57.
Pei H,Fang S F,Qin Z H,et al.Remote sensing-based monitoring of coverage and depth of snow in northern Xinjiang[J].Journal of Natural Disasters,2008,17(5):52-57.
[16] 赵军,陈恺悦,师银芳.提高森林覆盖区积雪提取精度的方法研究——以玛纳斯河流域为例[J].遥感技术与应用,2015,30(6):1051-1058.
Zhao J,Chen K Y,Shi Y F.Methods research to improve the extraction accuracy of snow under forest cover:A case study of Manas River basin[J].Remote Sensing Technology and Application,2015,30(6):1051-1058.
[17] 徐涵秋,唐菲.新一代Landsat系列卫星:Landsat8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11):3249-3257.
Xu H Q,Tang F.Analysis of new characteristics of the first Landsat8 image and their eco-environmental significance[J].Acta Ecologica Sinica,2013,33(11):3249-3257.
[18] 魏玥. 北疆区域积雪深度变化的遥感监测研究[D].乌鲁木齐:新疆师范大学,2010.
Wei Y.Remote Sensing Monitoring of Snow Depth Change in North Part of Xinjiang[D].Urumqi:Xinjiang Normal University,2010.
[19] 郝晓华,王杰,王建,等.积雪混合像元光谱特征观测及解混方法比较[J].光谱学与光谱分析,2012,32(10):2753-2758.
Hao X H,Wang J,Wang J,et al.Observations of snow mixed pixel spectral characteristics using a ground-based spectral radiometer and comparing with unmixing algorithms[J].Spectroscopy and Spectral Analysis,2012,32(10):2753-2758.
[20] 闪旭,刘志辉,张波.新疆军塘湖流域融雪期不同积雪及雪被地物光谱反射率特征分析[J].安徽农业科学,2014,42(3):853-855,887.
Shan X,Liu Z H,Zhang B.Study of spectrum reflectance characteristics of snow and snow-covered land surface objects in the melting-snow period[J].Journal of Anhui Agricultural Sciences,2014,42(3):853-855,887.
[21] 程熙,沈占锋,骆剑承,等.利用地物波谱学习的遥感影像波段模拟方法[J].红外与毫米波学报,2010,29(1):45-48,62.
Cheng X,Shen Z F,Luo J C,et al.Method on simulating remote sensing image band by using ground-object spectral features study[J].Journal of Infrared and Millimeter Waves,2010,29(1):45-48,62.
[22] 吴晓晨,孟令奎,张东映,等.冰雪遥感监测方法综述[J]. 水利信息化, 2013(1):35-39.
Wu X C,Meng L K,Zhang D Y,et al.Overview on methods of snow and ice remote sensing monitoring[J]. Water Resources Informatization, 2013(1):35-39.
[23] 刘玉洁,郑照军,王丽波.我国西部地区冬季雪盖遥感和变化分析[J].气候与环境研究,2003,8(1):114-123.
Liu Y J,Zheng Z J,Wang L B.Remote sensing on snow cover and variation analyzing in west of China[J].Climatic and Environmental Research,2003,8(1):114-123.
[1] 王月如, 韩鹏鹏, 关舒婧, 韩宇, 易琳, 周廷刚, 陈劲松. 基于Landsat8 OLI数据的富贵竹种植区域信息提取[J]. 国土资源遥感, 2019, 31(1): 133-140.
[2] 吴莹, 姜苏麟, 王振会. 积雪陆表微波观测资料干扰识别方法对比分析[J]. 国土资源遥感, 2018, 30(3): 40-47.
[3] 侯小刚, 郑照军, 李帅, 陈雪华, 崔宇. 近15年新疆逐日无云积雪覆盖产品生成及精度验证[J]. 国土资源遥感, 2018, 30(2): 214-222.
[4] 张雅莉, 塔西甫拉提·特依拜, 阿尔达克·克里木, 张东, 依力亚斯江·努尔麦麦提, 张飞. 基于Landsat8 OLI影像光谱的土壤盐分估算模型研究[J]. 国土资源遥感, 2018, 30(1): 87-94.
[5] 除多, 达娃, 拉巴卓玛, 徐维新, 张娟. 基于MODIS数据的青藏高原积雪时空分布特征分析[J]. 国土资源遥感, 2017, 29(2): 117-124.
[6] 阎福礼, 徐建国, 鲁志弘. BJ-1智能小卫星多曝光量数据特征及其积雪提取方法研究[J]. 国土资源遥感, 2016, 28(1): 28-34.
[7] 魏锋华, 李才兴, 扎西央宗. 基于中巴资源卫星数据的积雪监测研究[J]. 国土资源遥感, 2007, 19(3): 31-35.
[8] 武胜利, 王建明, 刘伟, 余琴.  AIEM模型在积雪散射模拟中的应用[J]. 国土资源遥感, 2006, 18(1): 40-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发