Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 137-144    DOI: 10.6046/gtzyyg.2020.04.18
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于两层随机森林模型估算中国东部沿海地区的PM2.5浓度
杨立娟()
闽江学院测绘工程系,福州 350018
Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model
YANG Lijuan()
Department of Surveying and Mapping Engineering, Minjiang University, Fuzhou 350118, China
全文: PDF(4529 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于暗像元算法反演的气溶胶光学厚度(aerosol optical depht,AOD)产品已被广泛应用于近地面PM2.5浓度估算,但该算法不能有效反演高反射率地表的AOD值。为此,本研究通过构建包含气象因子的随机森林模型来估算缺失的AOD值,并在此基础上,结合AOD、气象、植被覆盖度和道路密度等参数构建第二层随机森林模型,以估算长江三角洲和珠江三角洲地区的近地面PM2.5浓度。研究结果表明,由随机森林模型反演的AOD值与MODIS AOD值高度相关(R2=0.94); 且模型反演的PM2.5浓度与地面实测值之间的R2高达0.97,均方根误差仅为5.57 μg/m 3。据此获得的PM2.5浓度空间分布显示,PM2.5年均浓度的高值区域主要分布在地表高程较低的江苏省(≥40 μg/m3)。研究表明,本研究所构建的包含AOD和其他辅助变量的2层随机森林模型可有效获取近地面PM2.5浓度的空间分布。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨立娟
关键词 随机森林模型PM2.5空间分布AOD反演长江三角洲珠江三角洲    
Abstract

The aerosol optical depth (AOD) derived via dark-target algorithm has been widely used as an effective tool for estimating PM2.5concentrations. However, this algorithm cannot effectively retrieve AOD on the bright surface. Therefore, the authors used a random forest model incorporating meteorological parameters to predict the missing AOD values, and then employed a second-stage random forest model combining the retrieved AOD with meteorological parameters, vegetation cover and road density to estimate the PM2.5concentrations in two districts of eastern coastal zone of China, i.e., YRD and PRD. The result shows that the proposed model performed very well, achieving R2 of 0.94 for AOD predictions and MODIS AOD and an overall R2 of 0.97 with RMSE being only 5.57 μg/m 3 between the estimated and observed PM2.5 concentrations. The spatial distribution of PM2.5concentrations suggests that the high values are mainly located in Jiangsu Province with low elevation (≥40 μg/m3). The results indicate that the proposed two-stage random forest model incorporated with satellite AOD and other variables could be effectively used for estimating the ground-level PM2.5 concentrations.

Key wordsrandom forest model    PM2.5 distribution    AOD retrieval    YRD    PRD
收稿日期: 2020-02-03      出版日期: 2020-12-23
:  TP79  
基金资助:闽江学院引进人才科研启动项目“基于机器学习的中高空间分辨率PM2.5遥感估算模型研究”(MJY20001);闽江学院纵向校级项目“基于卫星遥感的PM2.5浓度时空分布研究”(MYK19029)
作者简介: 杨立娟(1985- ),女,博士,副教授,主要从事环境与资源遥感研究。Email:subrinarzhong@aliyun.com
引用本文:   
杨立娟. 基于两层随机森林模型估算中国东部沿海地区的PM2.5浓度[J]. 国土资源遥感, 2020, 32(4): 137-144.
YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.18      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/137
Fig.1  研究区示意图
变量 最小值 最大值 均值 标准差
PM2.5 /(μg·m-3) 1.00 377.00 41.53 32.00
AOD 0.01 2.20 0.26 0.18
PBLH/m 63.38 2 227.65 940.37 941.88
PS/hPa 918.60 1 034.00 1 003.20 1 007.00
RH/% 13.50 100.00 62.30 64.30
T2 m/K 269.80 310.20 294.90 296.00
T10 m/K 269.40 309.30 294.20 295.30
Ts/K 271.90 320.80 297.70 298.90
U10 m/(m·s-1) -11.44 9.04 -0.79 -0.95
U-component/(m·s-1) -15.35 14.36 -1.07 -1.38
V10 m/(m·s-1) -17.95 11.59 -0.23 -0.18
V-component/(m·s-1) -24.14 18.07 -0.40 -0.42
vegetationcover 0.00 0.87 0.35 0.33
roaddensity/(km·km-2) 0.11 2.31 1.13 1.05
Tab.1  建模参数的统计数据
Fig.2  各变量在PM2.5浓度变异中的重要性
Fig.3  2层随机森林模型的估算结果
Fig.4  分季节和分月份的模型估算结果
Fig.5  模型CV估算结果
时间 R2 RMSE/(μg·m-3)
全年 0.97 5.73
春季 0.97 5.99
夏季 0.95 3.99
秋季 0.96 4.62
冬季 0.96 7.66
Tab.2  全年和4个季节的模型CV估算结果
Fig.6  YRD和PRD区域的年均PM2.5浓度空间分布
Fig.7  YRD和PRD区域4季的PM2.5空间分布
[1] Ma J Z, Chen Y, Wang W, et al. Strong air pollution causes widespread haze-clouds over China[J]. Journal of Geophysical Research-Atmospheres, 2010,115(D18204).
[2] Deng J J, Du K, Wang K, et al. Long-term atmospheric visibility trend in Southeast China,1973—2010[J]. Atmospheric Environment, 2012,59:11-21.
[3] Fang X, Zou B, Liu X P, et al. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling[J]. Remote Sensing of Environment, 2016,186:152-163.
[4] 陈辉, 厉青, 王中挺, 等. MERSI和MODIS卫星监测京津冀及周边地区PM2.5浓度[J]. 遥感学报, 2018,22(5):822-832.
Chen H, Li Q, Wang Z T, et al. Utilization of MERSI and MODIS data to monitor PM2.5 concentrations in Beijing-Tianjin-Hebei and its surrounding areas[J]. Journal of Remote Sensing, 2018,22(5):822-832.
[5] Zhao P S, Zhang X L, Xu X F, et al. Long-term visibility trends and characteristics in the region of Beijing,Tianjin,and Hebei,China[J]. Atmospheric Research, 2011,101(3):711-718.
[6] Cao J J, Shen Z X, Chow J C, et al. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities[J]. Journal of the Air and Waste Management Association, 2012,62(10):1214-1226.
pmid: 23155868
[7] Wang S, Li G G, Gong Z Y, et al. Spatial distribution,seasonal variation and regionalization of PM2.5 concentrations in China[J]. Science China-Chemistry, 2015,58(9):1435-1443.
[8] Xu H, Guang J, Xue Y, et al. A consistent aerosol optical depth (AOD) dataset over mainland China by integration of several AOD products[J]. Atmospheric Environment, 2015,114:48-56.
[9] van Donkelaar A, Martin R V, Park R J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing[J]. Journal of Geophysical Research-Atmospheres, 2006,111(D21).
[10] Fan X H, Chen H B, Lin L F, et al. Retrieval of aerosol optical properties over the Beijing area using POLDER/PARASOL satellite polarization measurements[J]. Advances in Atmospheric Sciences, 2009,26(6):1099-1107.
doi: 10.1007/s00376-009-8103-x
[11] Livingston J M, Redemann J, Shinozuka Y, et al. Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008[J]. Atmospheric Chemistry and Physics, 2014,14(4):2015-2038.
[12] 贾松林, 苏林, 陶金花, 等. 卫星遥感监测近地表细颗粒物多元回归方法研究[J]. 中国环境科学, 2014(3):565-573.
Jia S L, Su L, Tao J H, et al. A study of multiple regression method for estimating concentration of fine particulate matter using satellite remote sensing[J]. China Environmental Science, 2014(3):565-573.
[13] Ma Z W, Liu Y, Zhao Q Y, et al. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model[J]. Atmospheric Environment, 2016,133:156-164.
[14] Gupta P, Christopher S A. Particulate matter air quality assessment using integrated surface,satellite,and meteorological products:2.A neural network approach[J]. Journal of Geophysical Research-Atmospheres, 2009,114.
doi: 10.1029/2008JE003285 pmid: 27630378
[15] Wang Z F, Chen L F, Tao J H, et al. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sensing of Environment, 2010,114(1):50-63.
[16] Yang X F, Zheng Y X, Geng G N, et al. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region,China[J]. Environmental Pollution, 2017,226:143-153.
pmid: 28419921
[17] 阳海鸥, 陈文波, 梁照凤. LUR模型模拟的南昌市PM2.5浓度与土地利用类型的关系[J]. 农业工程学报, 2017,33(6):232-239.
Yang H O, Chen W B, Liang Z F. Relationship of PM2.5 concentration and land use type in Nanchang City based on LUR simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(6):232-239.
[18] Zhang T H, Gong W, Wang W, et al. Ground level PM2.5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI)[J]. International Journal of Environmental Research and Public Health, 2016,13(12):1215.
doi: 10.3390/ijerph13121215
[19] Xiao L, Lang Y, Christakos G. High-resolution spatiotemporal mapping of PM2.5 concentrations at mainland China using a combined BME-GWR technique[J]. Atmospheric Environment, 2018,173:295-305.
[20] Bai Y, Wu L X, Qin K, et al. A Geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD[J]. Remote Sensing, 2016,8(3):262.
[21] He Q Q, Huang B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. Remote Sensing of Environment, 2018,206:72-83.
[22] Lee H J, Liu Y, Coull B A, et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmospheric Chemistry and Physics, 2011,11(15):7991-8002.
[23] 杨立娟, 徐涵秋, 金致凡. MODIS卫星遥感估计福州地区近地面PM2.5浓度[J]. 遥感学报, 2018,22(1):64-75.
Yang L J, Xu H Q, Jin Z F. Estimation of ground-level PM2.5 concentrations using MODIS satellite data in Fuzhou,China[J]. Journal of Remote Sensing, 2018,22(1):64-75.
[24] Yang L J, Xu H Q, Jin Z F. Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model[J]. Journal of Cleaner Production, 2019,227:472-482.
[25] Sorek H M, Kloog I, Koutrakis P, et al. Assessment of PM2.5 concentrations over bright surfaces using MODIS satellite observations[J]. Remote Sensing of Environment, 2015,163:180-185.
doi: 10.1016/j.rse.2015.03.014
[26] Ma Z W, Hu X F, Huang L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science and Technology, 2014,48(13):7436-7444.
pmid: 24901806
[27] Mehdipour V, Stevenson D S, Memarianfard M, et al. Comparing different methods for statistical modeling of particulate matter in Tehran,Iran[J]. Air Quality Atmosphere and Health, 2018,11(10):1155-1165.
[28] Hu X F, Belle J H, Meng X, et al. Estimating PM2.5 concentrations in the conterminous united states using the random forest approach[J]. Environmental Science and Technology, 2017,51(12):6936-6944.
pmid: 28534414
[29] Brokamp C, Jandarov R, Hossain M, et al. Predicting daily urban fine particulate matter concentrations using a random forest model[J]. Environmental Science and Technology, 2018,52(7):4173-4179.
doi: 10.1021/acs.est.7b05381 pmid: 29537833
[30] Song W Z, Jia H F, Huang J F, et al. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 2014,154:1-7.
[31] Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
[32] Khosravi I, Alavipanah S K. A random forest-based framework for crop mapping using temporal,spectral,textural and polarimetric observations[J]. International Journal of Remote Sensing, 2019,40(18):7221-7251.
[33] Huang K Y, Xiao Q Y, Meng X, et al. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain[J]. Environmental Pollution, 2018,242:675-683.
doi: 10.1016/j.envpol.2018.07.016 pmid: 30025341
[34] 谢志英, 刘浩, 唐新明. 北京市MODIS气溶胶光学厚度与PM10质量浓度的相关性分析[J]. 环境科学学报, 2015(10):3292-3299.
Xie Z Y, Liu H, Tang X M. Correlation analysis between MODIS aerosol optical depth and PM10 concentration over Beijing[J]. Acta Scientiae Circumstantiae, 2015(10):3292-3299.
[1] 贺丽琴, 杨鹏, 景欣, 晏磊, 苏琳琳. 基于MODIS影像及不透水面积的珠江三角洲热岛效应时空分析[J]. 国土资源遥感, 2017, 29(4): 140-146.
[2] 朱俊凤, 王耿明, 张金兰, 黄铁兰. 珠江三角洲海岸线遥感调查和近期演变分析[J]. 国土资源遥感, 2013, 25(3): 130-137.
[3] 徐梦洁, 陈黎, 刘焕金, 王慧. 基于DMSP/OLS夜间灯光数据的长江三角洲地区城市化格局与过程研究[J]. 国土资源遥感, 2011, 23(3): 106-112.
[4] 王兴玲, 亢庆. 遥感技术在珠江三角洲基塘用地变迁调查中的应用——以顺德、南海基塘区为例[J]. 国土资源遥感, 1997, 9(3): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发