Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 62-74    DOI: 10.6046/zrzyyg.2023238
  矿山生态环境遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
煤炭资源型区域生态环境演变研究——以山西省为例
赖仕久1(), 胡晋山1(), 康建荣1, 王小兵2
1.江苏师范大学地理测绘与城乡规划学院,徐州 221116
2.中钢集团马鞍山矿山研究总院股份有限公司,马鞍山 243000
Ecological evolution of coal resource-based regions: A case study of Shanxi Province
LAI Shijiu1(), HU Jinshan1(), KANG Jianrong1, WANG Xiaobing2
1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China
2. Sinosteel Maanshan General Institute of Mining Research Co.,Ltd., Maanshan 243000, China
全文: PDF(7826 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

山西省是全国重要的煤炭基地,大范围、高强度的煤炭资源开采对生态环境造成了破坏,因此对其生态环境演变进行研究具有重要意义。该文基于Google Earth Engine(GEE)平台,应用MODIS影像计算山西省范围内2000—2022年的长时间序列的遥感生态指数(remote sensing ecological index, RSEI),用Mann-Kendall趋势分析法对RSEI的演变趋势进行分析,用Pettitt突变检验法对RSEI突变进行分析,用皮尔逊相关系数对RSEI与气候因子的相关性进行分析。结果表明: 山西省2000—2022年近23 a间平均生态质量较好,但全省的煤炭矿区平均生态质量一般,降水量和气温的空间分布对RSEI的空间分布具有较大的解释力。全省大部分区域RSEI演变趋势为提升,降低的区域主要集中在煤炭矿区和人口密集和经济发达的盆地区域。全省生态质量从较差提升到一般,再提升到较好,演变过程大致可以分为4个阶段,2000—2006年是波动上升期,2006—2012年是稳定期,2012—2019年是向上波动期,2019—2022年是持续上升期; 全省的煤炭矿区生态质量从较差提升到较好,演变过程大致也可以分为4个阶段,2000—2006年是波动上升期,2006—2012年是稳定期,2012—2019年是波动下降期,2019—2022年是持续上升期; 2010年为山西省生态质量突变年份,山西省及其煤炭矿区生态质量在2010年前向好,在2010年后全面提升。降水量年际变化对生态质量的影响总体是正向的,而气温年际变化对生态质量的影响不显著。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赖仕久
胡晋山
康建荣
王小兵
关键词 遥感生态指数生态环境演变生态质量突变山西省国家煤炭规划矿区    
Abstract

Shanxi Province is recognized as a significant coal base in China. The extensive and intensive coal mining activities have adversely affected the local ecology, rendering the research on ecological evolution in Shanxi Province highly significant. Utilizing the Google Earth Engine (GEE) platform, this study calculated the 2000-2022 remote sensing ecological index (RSEI) of Shanxi Province using images from Moderate Resolution Imaging Spectroradiometer (MODIS). The Mann-Kendall trend analysis method was employed to analyze the evolutionary trends of RSEI, while Pettitt mutation tests were conducted to identify RSEI mutations. Furthermore, the Pearson correlation coefficient was used to analyze the correlation between RSEI and climatic factors. The results indicate that Shanxi Province exhibited relatively high ecological quality on average during the period. However, the coal mining areas in the province displayed moderate ecological quality overall. The spatial distribution of precipitation and temperature can effectively account for the spatial distribution of RSEI. Most regions in Shanxi Province showed an upward trend in RSEI, with areas with reduced RSEI predominantly located in coal mining areas and basin areas with high population density and a developed economy. During the 23 years, the ecological quality in Shanxi Province has evolved from poor to moderate and then to relatively good, increased while fluctuating from 2000 to 2006, kept stable from 2006 to 2012, regressed after increase from 2012 to 2019, and continuously increased from 2019 to 2022. Similarly, the ecological quality in coal mining areas has shifted from relatively poor to relatively good, increased while fluctuating from 2000 to 2006, kept stable from 2006 to 2012, decreased while fluctuating from 2012 to 2019, and continuously increased from 2019 to 2022. The year 2010 is identified as a pivotal point for the ecological quality of Shanxi Province, with the ecological quality trending upward from 2000 to 2010 and comprehensively improving after 2010 across the province and its coal mining areas. The interannual variations in precipitation generally produce positive impacts on the ecological quality, while the variations in interannual temperature exert insignificant impacts.

Key wordsremote sensing ecological index    ecological assessment    ecological quality mutation    Shanxi Province    national planning coal mining area
收稿日期: 2023-08-02      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“山区采动地表时空动态机理与反演研究”(41671395);国家自然科学基金项目“山区煤矿开采对地表水资源影响规律研究”(52074133);江苏师范大学研究生科研与实践创新计划项目“煤炭资源型区域生态环境演变研究——以山西省为例”(2022XKT0064)
通讯作者: 胡晋山(1973-),男,博士,教授,研究方向为GIS与矿区生态环境治理。Email: xzjshu@163.com
作者简介: 赖仕久(1999-),男,硕士研究生,研究方向为GIS与矿区生态环境治理。Email: 1774014207@qq.com
引用本文:   
赖仕久, 胡晋山, 康建荣, 王小兵. 煤炭资源型区域生态环境演变研究——以山西省为例[J]. 自然资源遥感, 2024, 36(4): 62-74.
LAI Shijiu, HU Jinshan, KANG Jianrong, WANG Xiaobing. Ecological evolution of coal resource-based regions: A case study of Shanxi Province. Remote Sensing for Natural Resources, 2024, 36(4): 62-74.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023238      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/62
Fig.1  山西省地势及煤炭矿区分布图
1. 大同矿区; 2. 平朔朔南矿区; 3. 河保偏矿区; 4. 轩岗矿区; 5. 离柳矿区; 6. 岚县矿区; 7. 阳泉矿区; 8. 东山矿区; 9. 西山古交矿区; 10. 汾西矿区; 11. 石隰矿区; 12. 武夏矿区; 13. 霍东矿区; 14. 霍州矿区; 15. 潞安矿区; 16. 乡宁矿区; 17. 晋城矿区
Fig.2  山西省降水及气温分布图
年份 NDVI
贡献度
NDBSI
贡献度
WET
贡献度
LST
贡献度
特征值
占比/%
2000年 0.622 -0.451 0.445 -0.461 87.69
2001年 0.588 -0.548 0.456 -0.382 89.41
2002年 0.554 -0.512 0.443 -0.485 82.82
2003年 0.534 -0.603 0.382 -0.453 83.08
2004年 0.563 -0.649 0.397 -0.323 80.37
2005年 0.563 -0.609 0.373 -0.417 86.23
2006年 0.539 -0.612 0.369 -0.445 83.55
2007年 0.592 -0.585 0.371 -0.412 84.15
2008年 0.579 -0.542 0.352 -0.498 86.20
2009年 0.557 -0.607 0.380 -0.422 83.65
2010年 0.550 -0.572 0.364 -0.488 88.18
2011年 0.574 -0.563 0.374 -0.461 83.86
2012年 0.608 -0.573 0.354 -0.421 76.92
2013年 0.591 -0.612 0.355 -0.387 75.86
2014年 0.545 -0.580 0.337 -0.503 84.39
2015年 0.570 -0.591 0.371 -0.434 83.32
2016年 0.597 -0.584 0.314 -0.450 78.80
2017年 0.549 -0.611 0.312 -0.478 86.51
2018年 0.556 -0.596 0.388 -0.430 69.41
2019年 0.515 -0.619 0.322 -0.498 81.57
2020年 0.509 -0.659 0.370 -0.413 80.26
2021年 0.554 -0.574 0.346 -0.494 83.40
2022年 0.513 -0.604 0.360 -0.493 80.06
Tab.1  第一主成分指标贡献度与特征值占比
参数 NDVI
贡献度
NDBSI
贡献度
WET
贡献度
LST
贡献度
平均值 0.564 -0.585 0.371 -0.446
标准差 0.029 0.044 0.038 0.045
Tab.2  第一主成分指标贡献度平均值与标准差
Fig.3  山西省2000—2022年RSEI均值分布图
Fig.4  山西省、煤炭矿区、非煤炭矿区2000—2022年逐年平均RSEI变化趋势图
Fig.5  山西省2000—2022年RSEI演变趋势分布图
Fig.6  山西省2000—2022年RSEI突变分布图
Fig.7  山西省RSEI分布图
Fig.8  山西省RSEI等级差分布图
Fig.9  山西省RSEI与降水量相关性分布图
Fig.10  山西省RSEI与气温相关性分布图
[1] 范德芹, 邱玥, 孙文彬, 等. 基于遥感生态指数的神府矿区生态环境评价[J]. 测绘通报, 2021(7):23-28.
doi: 10.13474/j.cnki.11-2246.2021.0203
Fan D Q, Qiu Y, Sun W B, et al. Evaluating ecological environment based on remote sensing ecological index in Shenfu mining area[J]. Bulletin of Surveying and Mapping, 2021(7):23-28.
doi: 10.13474/j.cnki.11-2246.2021.0203
[2] 李晶, 李生财, 郭伟, 等. 基于改进遥感生态指数的山西省及煤炭矿区生态环境分析[J]. 金属矿山, 2023(1):30-39.
Li J, Li S C, Guo W, et al. Ecological environment analysis of Shanxi Province and coal mining areas based on modified remote sensing ecological index[J]. Metal Mine, 2023(1):30-39.
[3] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.
[4] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[5] 林娜, 张迪, 潘建平, 等. 长寿区长时序生态质量评价及影响因素分析[J]. 长江科学院院报, 2023, 40(11):56-62.
doi: 10.11988/ckyyb.20220860
Lin N, Zhang D, Pan J P, et al. Long time series ecological quality assessment and influencing factors analysis in Changshou District[J]. Journal of Yangtze River Scientific Research Institute, 202, 40(11):56-62.
[6] Hu X S, Xu H Q. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality:A case from Fuzhou City,China[J]. Ecological Indicators, 2018, 89:11-21.
[7] Xu H Q, Wang Y F, Guan H D, et al. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis[J]. Remote Sensing, 2019, 11(20):2345.
[8] 苏嘉亮, 晏晨然, 雷雨, 等. 陕西省生态环境质量长时序动态监测[J]. 生态学报, 2023, 43(2):554-568.
Su J L, Yan C R, Lei Y, et al. Long time series dynamic monitoring of eco-environmental quality in Shaanxi Province[J]. Acta Ecologica Sinica, 2023, 43(2):554-568.
[37] Yang H H, Yu J, Xu W Z, et al. Long-time series ecological environment quality monitoring and cause analysis in the Dianchi Lake Basin,China[J]. Ecological Indicators, 2023, 148:110084.
[9] 钟欣呈, 许泉立. 基于RSEI模型的玉溪市生态环境变化监测与评价[J]. 水土保持研究, 2021, 28(4):350-357.
Zhong X C, Xu Q L. Monitoring and evaluation of ecological environment changes in Yuxi City based on RSEI model[J]. Research of Soil and Water Conservation, 2021, 28(4):350-357.
[10] 排日海·合力力, 昝梅, 阿里木江·卡斯木. 乌鲁木齐市生态环境遥感评价及驱动因子分析[J]. 干旱区研究, 2021, 38(5):1484-1496.
doi: 10.13866/j.azr.2021.05.31
Pariha H, Zan M, Alimjan K. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors[J]. Arid Zone Research, 2021, 38(5):1484-1496.
doi: 10.13866/j.azr.2021.05.31
[11] 李妍, 张国钦, 吝涛, 等. 乡镇遥感生态指数时空变化及影响因子研究——以天津市蓟州区为例[J]. 生态学报, 2022, 42(2):474-486.
Li Y, Zhang G Q, Lin T, et al. The spatiotemporal changes of remote sensing ecological index in towns and the influencing factors:A case study of Jizhou District,Tianjin[J]. Acta Ecologica Sinica, 2022, 42(2):474-486.
[12] 温小乐, 陈旭, 徐涵秋. 基于遥感生态指数的京郊南部城市生态评价——以涿州市、固安县为例[J]. 福州大学学报(自然科学版), 2022, 50(2):286-292.
Wen X L, Chen X, Xu H Q. Ecological evaluation of cities in southern Beijing suburbs based on remote sensing ecological index:Taking Zhuozhou City and Gu’an County as examples[J]. Journal of Fuzhou University (Natural Science Edition), 2022, 50(2):286-292.
[13] 潘洪义, 李加安, 张琴. 基于RSEI的地震区生态环境质量恢复研究——以汶川县为例[J]. 长江流域资源与环境, 2021, 30(3):745-757.
Pan H Y, Li J A, Zhang Q. Study on restoration of ecological environment quality in earthquake area based on RSEI:A case study of Wenchuan County[J]. Resources and Environment in the Yangtze Basin, 2021, 30(3):745-757.
[14] 王建, 赵牡丹, 李健波, 等. 基于MODIS时序数据的秦巴山区生态环境质量动态监测及驱动力分析[J]. 山地学报, 2021, 39(6):830-841.
Wang J, Zhao M D, Li J B, et al. Dynamic monitoring and driving forces of eco-environmental quality in the qinba mountains based on MODIS time-series data[J]. Mountain Research, 2021, 39(6):830-841.
[15] 张云霞, 汪仕美, 李焱, 等. 2000—2020年青藏高原生态质量时空变化[J]. 生态学杂志, 2023, 42(6):1464-1473.
Zhang Y X, Wang S M, Li Y, et al. Spatiotemporal patterns of ecological quality across the Qinghai-Tibet Plateau during 2000-2020[J]. Chinese Journal of Ecology, 2023, 42(6):1464-1473.
doi: DOI: 10.13292/j.1000-4890.202306.033
[16] Yuan B D, Fu L, Zou Y A, et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin,based on RSEI[J]. Journal of Cleaner Production, 2021, 302:126995.
[17] Xiong Y, Xu W H, Lu N, et al. Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE:A case study in Erhai Lake Basin,Yunnan Province,China[J]. Ecological Indicators, 2021, 125:107518.
[18] 李婧, 郝育红, 孙京敏, 等. 基于遥感生态指数的城市矿山生态环境时空变化评价[J]. 城市发展研究, 2021, 28(1):17-22.
Li J, Hao Y H, Sun J M, et al. Evaluation of ecological environment’ spatio-temporal variation in urban mine based on rsei[J]. Urban Development Studies, 2021, 28(1):17-22.
[19] 康帅直, 穆琪, 赵永华, 等. 黄土高原神府资源开采区生态环境质量时空格局特征[J]. 生态学报, 2023, 43(7):2781-2792.
Kang S Z, Mu Q, Zhao Y H, et al. Temporal and spatial pattern characteristics of ecological environmental quality in Shenfu mining area of Loess Plateau[J]. Acta Ecologica Sinica, 2023, 43(7):2781-2792.
[20] 付杰, 王萍, 张清, 等. 基于改进遥感生态指数的海南岛生态环境质量动态变化[J]. 农业资源与环境学报, 2021, 38(6):1102-1111.
Fu J, Wang P, Zhang Q, et al. Dynamic monitoring of ecological environment quality of Hainan Island based on improved remote sensing ecological index[J]. Journal of Agricultural Resources and Environment, 2021, 38(6):1102-1111.
[21] 张伟, 杜培军, 郭山川, 等. 改进型遥感生态指数及干旱区生态环境评价[J]. 遥感学报, 2023, 27(2):299-317.
Zhang W, Du P J, Guo S C, et al. Enhanced remote sensing ecological index and ecological environment evaluation in arid area[J]. National Remote Sensing Bulletin, 2023, 27(2):299-317.
[22] Firozjaei M K, Fathololoumi S, Weng Q H, et al. Remotely sensed urban surface ecological index (RSUSEI):An analytical framework for assessing the surface ecological status in urban environments[J]. Remote Sensing, 2020, 12(12):2029.
[23] 朱冬雨, 陈涛, 牛瑞卿, 等. 利用移动窗口遥感生态指数分析矿区生态环境[J]. 武汉大学学报(信息科学版), 2021, 46(3):341-347.
Zhu D Y, Chen T, Niu R Q, et al. Analyzing the ecological environment of mining area by using moving window remote sensing ecological index[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3):341-347.
[24] Zhu D Y, Chen T, Wang Z W, et al. Detecting ecological spatial-temporal changes by remote sensing ecological index with local adaptability[J]. Journal of Environmental Management, 2021, 299:113655.
[25] 徐涵秋, 邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 2022, 37(1):1-7.
doi: 10.11873/j.issn.1004-0323.2022.1.0001
Xu H Q, Deng W H. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application, 2022, 37(1):1-7.
[26] 徐涵秋, 李春强, 林梦婧. RSEI应使用主成分分析或核主成分分析?[J]. 武汉大学学报(信息科学版), 2023, 48(4):506-513.
Xu H Q, Li C Q, Lin M J. Should RSEI use PCA or kPCA?[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4):506-513.
[27] Zheng Z H, Wu Z F, Chen Y B, et al. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis[J]. Science of the Total Environment, 2022, 814:152595.
[28] Xu H Q, Li C Q, Shi T T. Is the z-score standardized RSEI suitable for time-series ecological change detection? Comment on Zheng et Al.(2022)[J]. The Science of the Total Environment, 2022, 853:158582.
[29] Zheng Z H, Wu Z F, Marinello F. Response to the letter to the editor" Is the z-score standardized RSEI suitable for time-series ecological change detection? Comment on Zheng et al.(2022)"[J]. Science of the Total Environment, 2023, 855:158932.
[30] Xu H, Liu F, Li C. Can a model be evaluated by a single fictitious data point in a real-world study case? Further comments on Zheng et al.[J]. Science of the Total Environment, 2023, 858:159911.
[31] 牛冲槐, 张敏, 樊燕萍. 山西省煤炭开采对生态环境影响评价[J]. 太原理工大学学报, 2006, 37(6):649-653.
Niu C H, Zhang M, Fan Y P. The influence evaluation of ecological environment caused by coal mining of Shanxi[J]. Journal of Taiyuan University of Technology, 2006, 37(6):649-653.
[32] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[33] Cao J X, Wu E T, Wu S H, et al. Spatiotemporal dynamics of ecological condition in qinghai-tibet plateau based on remotely sensed ecological index[J]. Remote Sensing, 2022, 14(17):4234.
[34] Fu J, Gong Y Q, Zheng W W, et al. Spatial-temporal variations of terrestrial evapotranspiration across China from 2000 to 2019[J]. Science of the Total Environment, 2022, 825:153951.
[35] 姚天次, 卢宏玮, 于庆, 等. 近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5):534-546.
doi: 10.11867/j.issn.1001-8166.2020.031
Yao T C, Lu H W, Yu Q, et al. Potential evapotranspiration characteristic and its abrupt change across the qinghai-tibetan plateau and its surrounding areas in the last 50 years[J]. Advances in Earth Science, 2020, 35(5):534-546.
[36] Feng Q, Zhou Z F, Zhu C L, et al. Quantifying the ecological effectiveness of poverty alleviation relocation in Karst areas[J]. Remote Sensing, 2022, 14(23):5920.
[1] 李光哲, 王浩, 曹银璇, 张晓宇, 宁晓刚. 长株潭城市群生态环境质量时空演变及影响因素分析[J]. 自然资源遥感, 2023, 35(4): 244-254.
[2] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[3] 骆泓鉴, 明冬萍, 徐录. 基于GEE的遥感生态指数时序计算[J]. 自然资源遥感, 2022, 34(2): 271-277.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 徐志刚, 郑鸿瑞, 戴晨曦, 高鹏, 杜培军. 永定客家土楼世界遗产地土地覆盖与生态变化遥感评价[J]. 国土资源遥感, 2018, 30(1): 102-108.
[6] 张洪敏, 张艳芳, 田茂, 吴春玲. 基于主成分分析的生态变化遥感监测——以宝鸡市城区为例[J]. 国土资源遥感, 2018, 30(1): 203-209.
[7] 罗春, 刘辉, 戚陆越. 基于遥感指数的生态变化评估——以常宁市为例[J]. 国土资源遥感, 2014, 26(4): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发