Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 49-55    DOI: 10.6046/zrzyyg.2023332
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
级联改进DexiNed和DeepLabv3+网络的坡耕地提取
刘超兵1(), 甘淑1,2(), 袁希平3,4, 尚华胜1
1.昆明理工大学国土资源工程学院,昆明 650093
2.云南省高校高原山区空间信息测绘技术应用工程研究中心,昆明 650093
3.滇西应用科技大学地球科学与工程学院,大理 671006
4.云南省高校山地实景点云数据处理及应用重点实验室,大理 671006
Extracting the information on sloping arable land based on improved DexiNed and DeepLabv3+ networks in a cascade connection
LIU Chaobing1(), GAN Shu1,2(), YUAN Xiping3,4, SHANG Huasheng1
1. School of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Application Engineering Research Center of Spatial Information Surveying and Mapping Technology in Plateau and Mountainous Areas Set by Universities in Yunnan Province, Kunmin 650093,China
3. School of Earth Sciences and Engineering, West Yunnan University of Applied Sciences, Dali 671006, China
4. Key Laboratory of Mountain Real Scene Point Cloud Data Processing and Application for Universities in Yunnan Province, Dali 671006, China
全文: PDF(4403 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

丘陵山地区域耕地细小狭窄、结构复杂且边界模糊,使得耕地信息难以迅速、准确地获取。针对上述问题,提出一种级联改进DexiNed和DeepLabv3+网络的坡耕地信息提取模型。首先,采用MobileNetv2替换原有的Xception模型作为DeepLabv3+模型主干网络,并提出一种联系较为紧密的低层次信息提取方法,将较低层次信息和较高层次信息初步融合来作为原低层次信息的输入; 其次,将原DeepLabv3+模型空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块的空洞率值优化为空洞率值分别为2,4,8,16的空洞卷积操作; 最后,采用级联边缘检测技术实现耕地地块边缘和语义特征的互联互通。该文以GF-2影像为数据源,云南禄丰恐龙谷为试验区进行耕地提取。实验结果表明,通过改进后的模型架构和算法,能更准确地识别耕地区域,提取结果与真实耕地标注的图像更为接近,漏提和误提区域减少,整体精度和稳定性提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘超兵
甘淑
袁希平
尚华胜
关键词 耕地信息提取边缘检测DeepLabv3+丘陵山地    
Abstract

Arable land in hilly and mountainous areas exhibits small, narrow, and complex structures with blurred boundaries, posing challenges in extracting arable land information quickly and accurately. Hence, this study proposed a model for extracting the information on sloping arable land based on improved DexiNed and DeepLabv3+ networks in a cascade connection. First, the backbone network of the DeepLabv3+ model uses MobileNetV2 to replace the original Xception model. A closely related low-level information extraction method preliminarily fuses the lower- and higher-level information as the input of the original low-level information. Second, the original atrous spatial pyramid pooling (ASPP) module of the DeepLabv3+ model is optimized through dilated convolution, with dilation rate values of 2, 4, 8, and 16. Third, cascaded edge detection technology enables the interconnection of arable land edges and semantic features. The proposed model was applied to extract information on arable land in the Lufeng Dinosaur Valley in Yunnan Province using the GF-2 image as the data source. The results show that the proposed model with an improved architecture and algorithm identified the arable land more accurately, with the extraction results closely matching the image with real arable land annotated. With reduced extraction missing and errors, the proposed model exhibits enhanced accuracy and stability overall.

Key wordsextraction of arable land information    edge detection    DeepLabv3+    hilly and mountainous areas
收稿日期: 2023-11-03      出版日期: 2025-05-09
ZTFLH:  TP79  
  P237  
基金资助:国家自然科学基金项目“禄丰环状构造的UAV数字地貌建模及地表特征测量模拟分析”(62266026)
通讯作者: 甘 淑(1964-),女,博士,教授,主要研究方向为摄影测量与遥感。Email: n1480@qq.com
作者简介: 刘超兵(1999-),男,硕士研究生,主要研究方向为三维激光点云技术应用。Email: 1433065161@qq.com
引用本文:   
刘超兵, 甘淑, 袁希平, 尚华胜. 级联改进DexiNed和DeepLabv3+网络的坡耕地提取[J]. 自然资源遥感, 2025, 37(2): 49-55.
LIU Chaobing, GAN Shu, YUAN Xiping, SHANG Huasheng. Extracting the information on sloping arable land based on improved DexiNed and DeepLabv3+ networks in a cascade connection. Remote Sensing for Natural Resources, 2025, 37(2): 49-55.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023332      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/49
Fig.1  研究区域
Fig.2  标签示例
Fig. 3  改进的DeepLabv3+模型
Fig.4  MobileNetv2网络模块操作
输入 操作 通道数 瓶颈层重
复次数
步幅
512×512×3 卷积 32 1 2
256×256×32 瓶颈层 16 1 1
256×256×16 瓶颈层 24 2 2
128×128×24 瓶颈层 32 3 2
64×64×32 瓶颈层 64 4 2
32×32×64 瓶颈层 96 3 1
32×32×96 瓶颈层 160 3 2
16×16×160 瓶颈层 1 1
Tab.1  MobileNetv2网络模块参数
Fig.5  DexiNed模型结构
Fig.6  级联模型网络
序号 遥感图像 真实标注 本文方法 级联未
改进方法
DeepLabv3+
方法
本文方法
提取结果
级联未改
进提取结果
DeepLabv3+
提取结果
1
2
3
图例
Tab.2  山地区耕地提取结果对比分析图
山地区 真实耕地
面积/ hm2
误提面
积/hm2
误提
率/%
漏提面
积/ hm2
漏提
率/%
级联改进模型 340.19 28.44 8.36 23.61 6.94
级联未改进模型 29.39 8.64 30.51 8.97
DeepLabv3+模型 30.48 8.96 32.93 9.68
Tab.3  山地区耕地误提、漏提面积统计表
[1] 吴炳方, 张峰, 刘成林, 等. 农作物长势综合遥感监测方法[J]. 遥感学报, 2004, 8(6):498-514.
Wu B F, Zhang F, Liu C L, et al. An integrated method for crop condition monitoring[J]. Journal of Remote Sensing, 2004, 8(6):498-514.
[2] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748-767.
Chen Z X, Ren J Q, Tang H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5):748-767.
[3] 史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2):247-260.
Shi Z, Liang Z Z, Yang Y Y, et al. Status and prospect of agricultural remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):247-260.
[4] 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4):0428001.
Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4):0428001.
[5] 张新长, 黄健锋, 宁婷. 高分辨率遥感影像耕地提取研究进展与展望[J]. 武汉大学学报(信息科学版), 2023, 48(10):1582-1590.
Zhang X C, Huang J F, Ning T. Progress and prospect of cultivated land extraction from high-resolution remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10):1582-1590.
[6] 熊曦柳, 胡月明, 文宁, 等. 耕地遥感识别研究进展与展望[J]. 农业资源与环境学报, 2020, 37(6):856-865.
Xiong X L, Hu Y M, Wen N, et al. Progress and prospect of cultivated land extraction research using remote sensing[J]. Journal of Agricultural Resources and Environment, 2020, 37(6):856-865.
[7] 李爱农, 边金虎, 张正健, 等. 山地遥感主要研究进展、发展机遇与挑战[J]. 遥感学报, 2016, 20(5):1199-1215.
Li A N, Bian J H, Zhang Z J, et al. Progresses,opportunities,and challenges of mountain remote sensing research[J]. Journal of Remote Sensing, 2016, 20(5):1199-1215.
[8] 周楠, 杨鹏, 魏春山, 等. 地块尺度的山区耕地精准提取方法[J]. 农业工程学报, 2021, 37(19):260-266.
Zhou N, Yang P, Wei C S, et al. Accurate extraction method for cropland in mountainous areas based on field parcel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19):260-266.
[9] Dong S, Wang P, Abbas K. A survey on deep learning and its applications[J]. Computer Science Review, 2021, 40:100379.
[10] Ma L, Liu Y, Zhang X, et al. Deep learning in remote sensing applications:A meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177.
[11] 刘巍, 吴志峰, 骆剑承, 等. 深度学习支持下的丘陵山区耕地高分辨率遥感信息分区分层提取方法[J]. 测绘学报, 2021, 50(1):105-116.
doi: 10.11947/j.AGCS.2021.20190448
Liu W, Wu Z F, Luo J C, et al. A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1):105-116.
doi: 10.11947/j.AGCS.2021.20190448
[12] Xie S, Tu Z. Holistically-nested edge detection[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago,Chile.IEEE, 2015:1395-1403.
[13] Zhao W D, Zhang Y, Zhang D D, et al. Refined edge detection model based on RCF[J]. Journal of Measurement Science and Instrumentation, 2024, 15(2):195-203.
[14] Zhou L, Zhang C, Wu M. D-LinkNet:LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Salt Lake City,UT,USA.IEEE, 2018:192-1924.
[15] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
[16] Xia L, Luo J, Sun Y, et al. Deep extraction of cropland parcels from very high-resolution remotely sensed imagery[C]// 2018 7th International Conference on Agro-Geoinformatics (Agro-geoinformatics). Hangzhou,China.IEEE, 2018:1-5.
[17] Diao Z, Guo P, Zhang B, et al. Maize crop row recognition algorithm based on improved UNet network[J]. Computers and Electronics in Agriculture, 2023, 210:107940.
[18] Liu S, Liu L, Xu F, et al. A deep learning method for individual arable field (IAF) extraction with cross-domain adversarial capabi-lity[J]. Computers and Electronics in Agriculture, 2022, 203:107473.
[19] Zhu M, Yao M, He Y, et al. Studies on high-resolution remote sensing sugarcane field[J]. IOP Conference Series: Earth and environmental science, 2019, 237: 32046.
[20] 高莎, 袁希平, 甘淑, 等. 基于无人机成像点云的禄丰恐龙谷南缘环状地貌空间特征探测实验分析[J]. 地质科技通报, 2021, 40(6):283-292.
Gao S, Yuan X P, Gan S, et al. Experimental analysis of spatial feature detection of the ring geomorphology at the south edge of Lufeng Dinosaur Valley based on UAV imaging point cloud[J]. Bulletin of Geological Science and Technology, 2021, 40(6):283-292.
[21] 陈佳俊. 基于GF-2卫星影像的川东丘陵地区耕地信息提取[D]. 成都: 成都理工大学, 2017.
Chen J J. Extraction of cultivated land information in hilly area of East Sichuan based on GF-2 satellite image[D]. Chengdu: Chengdu University of Technology, 2017.
[22] Sandler M, Howard A, Zhu M, et al. MobileNetV2:Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:4510-4520.
[23] Chollet F. Xception:Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:1800-1807.
[24] Soria X, Sappa A, Humanante P, et al. Dense extreme inception network for edge detection[J]. Pattern Recognition, 2023, 139:109461.
[1] 康辉, 窦文章, 韩灵怡, 丁梓越, 吴亮廷, 侯璐. 基于DeepLabv3+模型的地表水体快速遥感监测[J]. 自然资源遥感, 2024, 36(4): 117-123.
[2] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[3] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[4] 徐南, 周绍光. 基于图像分块和线段投票的遥感道路边缘线提取[J]. 国土资源遥感, 2015, 27(1): 55-61.
[5] 成晓倩, 樊良新, 赵红强. 基于图像分割技术的城区机载LiDAR数据滤波方法[J]. 国土资源遥感, 2012, 24(3): 29-32.
[6] 黄亮, 左小清, 冯冲, 聂俊堂. 基于Canny算法的面向对象影像分割[J]. 国土资源遥感, 2011, 23(4): 26-30.
[7] 赵凌, 张祖荫, 郭伟. 基于数学形态学的毫米波图像边缘检测方法[J]. 国土资源遥感, 2006, 18(4): 19-22.
[8] 刘楠, 舒宁. 基于局部光谱空间分析的多尺度边缘检测[J]. 国土资源遥感, 2005, 17(3): 34-38.
[9] 林卉, 舒宁, 赵长胜. 一种新的基于连通成分的边缘评价方法[J]. 国土资源遥感, 2003, 15(3): 37-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发