Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 128-135    DOI: 10.6046/zrzyyg.2021219
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种轻量级的DeepLabv3+遥感影像建筑物提取方法
王华俊(), 葛小三()
河南理工大学测绘与国土信息工程学院,焦作 454003
Lightweight DeepLabv3+ building extraction method from remote sensing images
WANG Huajun(), GE Xiaosan()
School of Surveying and Mapping and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
全文: PDF(5417 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

快速从遥感影像中提取出具有较高精度的建筑物是遥感智能化应用服务的重要研究内容之一。针对DeepLab模型对遥感影像建筑物边缘分割不精确、分割大尺度目标存在孔洞现象、网络参数量大等问题,提出一种轻量级DeepLabv3+模型的遥感影像建筑物提取方法。该方法使用轻量级网络MobileNetv2替换DeepLabv3+的主干网络Xception,从而减少参数量、提高训练速度; 对空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)的空洞率进行优化组合,提高多尺度语义特征提取效果。改进的模型在WHU和Massachusetts数据集上进行验证实验,结果表明,在WHU数据集中得到的交并比和F1分数分别为82.37%和92.89%,比DeepLabv3+分别提高2.71百分点和2.14百分点,在Massachusetts数据集中的交并比和F1分数比DeepLabv3+分别提高2.04百分点和2.32百分点,训练参数量和训练时间减少,建筑物提取精度得到有效提高,能够满足快速提取高精度建筑物的要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王华俊
葛小三
关键词 深度学习语义分割改进ASPPDeepLabv3+MobileNetv2    
Abstract

Fast extraction of buildings with high accuracy from remote sensing images is an important research of remote sensing intelligent application services. To address the problems of imprecise segmentation of building edge in remote sensing images, holes in large-scale target segmentation, and a large amount of network parameters in the DeepLab model, a lightweight DeepLabv3+ model for building extraction from remote sensing images is proposed. In this method, the lightweight network MobileNetv2 is used to replace Xception, the backbone network of DeepLabv3+, so as to reduce the number of parameters and improve the training speed; The hole rate of hole convolution in ASPP is optimized to improve the effect of multi-scale semantic feature extraction. The improved model has been tested on WHU and Massachusetts data sets. The results show that the IOU and F1 score in WHU dataset are 82.37% and 92.89%, respectively, 2.71 percentage points and 2.14 percentage points higher than those of DeepLabv3+, 2.04 percentage points, and 2.32 percentage points higher than those of DeepLabv3+ in Massachusetts data set. The number of training parameters and training time is reduced, and the accuracy of the building extraction is effectively improved, which can meet the requirements of fast extraction of high-precision buildings.

Key wordsdeep learning    semantic segmentation    improved ASPP    DeepLabv3+    MobileNetv2
收稿日期: 2021-07-14      出版日期: 2022-06-20
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“面向矿区地理协同设计的空间信息语义服务模式研究”(41572341)
通讯作者: 葛小三
作者简介: 王华俊(1997-),男,硕士研究生,主要从事遥感、地理信息服务技术方面的研究。Email: 1029803406@qq.com
引用本文:   
王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021219      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/128
Fig.1  DeepLabv3+中的Xception网络结构
Fig.2  本文方法网络结构
Fig.3  标准卷积和深度可分离卷积
Fig.4  MobileNetv2网络结构
输入 操作 扩张
倍数
输出通
道数
重复
次数
步长
2242×3 卷积层 32 1 2
1122×32 瓶颈层 1 16 1 1
1122×16 瓶颈层 6 24 2 2
562×24 瓶颈层 6 32 3 2
282×32 瓶颈层 6 64 4 2
282×64 瓶颈层 6 96 3 1
142×96 瓶颈层 6 160 3 2
72×160 瓶颈层 6 320 1 1
72×320 1×1卷积层 1 280 1 1
72×1 280 7×7平均池化层 1
1×1×k 1×1卷积层 k
Tab.1  MobileNetv2网络结构及参数
Fig.5  本文的ASPP结构
Fig.6  WHU与Massachusetts数据集实例图像
项目 配置
CPU Intel(R) Core(TM) i5-10200H CPU @
2.40 GHz
GPU NVIDIA GeForce GTX 1650 Ti
RAM 16 G
操作系统 64位Windows10
开发语言 Python 3.7
深度学习框架 Tensorflow-GPU 1.13.1
Tab.2  计算机配置
数据集 模型 IoU/% F1分
数/%
训练时
间/h
WHU U-Net 77.28 88.23 10.53
SegNet 77.15 89.14 15.64
PSPNet 78.23 89.53 11.32
DeepLabv3+ 79.66 90.75 10.65
本文方法 82.37 92.89 6.15
Massachusetts U-Net 71.25 82.11 12.88
SegNet 71.87 83.84 17.32
PSPNet 72.15 82.26 13.55
DeepLabv3+ 74.58 84.43 12.72
本文方法 76.62 86.75 7.35
Tab.3  建筑物提取评价结果
数据集 序号 原始图像 标签 U-Net SegNet DeepLabv3+ 本文方法
WHU 1
2
3
Massa-
chusetts
1
2
3
Tab.4  WHU和Massachusetts数据集建筑物提取结果
[1] 范荣双, 陈洋, 徐启恒, 等. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48(1):34-41.
Fan R S, Chen Y, Xu Q H, et al. A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):34-41.
[2] 张浩然, 赵江洪, 张晓光. 利用U-net网络的高分遥感影像建筑提取方法[J]. 遥感信息, 2020, 35(3):143-150.
Zhang H R, Zhao J H, Zhang X G. High-resolution image building extraction using U-net neural network[J]. Remote Sensing Information, 2020, 35(3):143-150.
[3] 许泽宇, 沈占锋, 李杨, 等. 结合模糊度和形态学指数约束的深度学习建筑物提取[J]. 地球信息科学学报, 2021, 23(5):918-927.
doi: 10.12082/dqxxkx.2021.200397
Xu Z Y, Shen Z F, Li Y, et al. Building extraction by deep learning method combined with ambiguity and morphological index constraints[J]. Journal of Geo-Information Science, 2021, 23(5):918-927.
[4] 唐璎, 刘正军, 杨懿, 等. 基于特征增强和ELU的神经网络建筑物提取研究[J]. 地球信息科学学报, 2021, 23(4):692-709.
doi: 10.12082/dqxxkx.2021.200130
Tang Y, Liu Z J, Yang Y, et al. Research on building extraction based on neural network with feature enhancement and ELU activation function[J]. Journal of Geo-Information Science, 2021, 23(4):692-709.
[5] 刘亦凡, 张秋昭, 王光辉, 等. 利用深度残差网络的遥感影像建筑物提取[J]. 遥感信息, 2020, 35(2):59-64.
Liu Y F, Zhang Q Z, Wang G H, et al. Building extraction in remote sensing imagery based on deep residual network[J]. Remote Sensing Information, 2020, 35(2):59-64.
[6] 陈凯强, 高鑫, 闫梦龙, 等. 基于编解码网络的航空影像像素级建筑物提取[J]. 遥感学报, 2020, 24(9):1134-1142.
Chen K Q, Gao X, Yan M L, et al. Building extraction in pixel level from aerial imagery with a deep encoder-decoder network[J]. Journal of Remote Sensing, 2020, 24(9):1134-1142.
[7] 叶沅鑫, 谭鑫, 孙苗苗, 等. 基于增强DeepLabV3网络的高分辨率遥感影像分类[J]. 测绘通报, 2021(4):40-44.
Ye Y X, Tan X, Sun M M, et al. High-resolution remote sensing image classification based on improved DeepLabV3 network[J]. Bulletin of Surveying and Mapping, 2021(4):40-44.
[8] Lecun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791
[9] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.
[10] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014:1409-1556.
[11] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[EB/OL].(2015-12-10)[2021-05-12]. https://arxiv.org/abs/1512.03385.
[12] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].(2016-11-04)[2021-05-12]. https://arxiv.org/abs/1602.07360.
[13] Tan M, Chen B, Pang R, et al. MnasNet:Platform-aware neural architecture search for mobile[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2019:2820-2828.
[14] Howard A G, Zhu M, Chen B, et al. MobileNets:Efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2021-05-12]. https://arxiv.org/abs/1704.04861.
[15] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4):357-361.
[16] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
[17] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Conference on Computer Vision(ECCV), 2018:801-818.
[18] 王俊强, 李建胜, 周华春, 等. 基于DeepLabv3+与CRF的遥感影像典型要素提取方法[J]. 计算机工程, 2019, 45(10):260-265,271.
Wang J Q, Li J S, Zhou H C, et al. Typical element extraction method of remote sensing image based on DeepLabv3+ and CRF[J]. Computer Engineering, 2019, 45(10):260-265,271.
[19] 刘文祥, 舒远仲, 唐小敏, 等. 采用双注意力机制DeepLabv3+算法的遥感影像语义分割[J]. 热带地理, 2020, 40(2):303-313.
Liu W X, Shu Y Z, Tang X M, et al. Remote sensing image segmentation using dual attention mechanism DeepLabv3+ algorithm[J]. Tropical Geography, 2020, 40(2):303-313.
[20] Sandler M, Howard A, Zhu M, et al. Mobilenetv2:Inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:4510-4520.
[21] Chollet F. Xception:Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:1800-1807.
[22] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9):1904-1916.
[23] Ji S P, Wei S Q, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1):574-586.
doi: 10.1109/TGRS.2018.2858817
[24] Mnih V. Machine learning for aerial image labeling[D]. Toronto: University of Toronto, 2013.
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[3] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[4] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[5] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[6] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[7] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[8] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[9] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[10] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[11] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[12] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[13] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[14] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[15] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发