Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 212-220    DOI: 10.6046/zrzyyg.2024019
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
内蒙古草原生态系统NEP时空变化特征及影响因素研究
唐霞(), 刘永新(), 马敏, 甄宏超
中国地质调查局呼和浩特自然资源综合调查中心,呼和浩特 010010
Exploring the spatiotemporal variations and influential factors of net ecosystem productivity in the Inner Mongolian grassland ecosystem
TANG Xia(), LIU Yongxin(), MA Min, ZHEN Hongchao
Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010010, China
全文: PDF(3399 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 净生态系统生产力(net ecosystem productivity,NEP)是定量反映生态系统固碳能力的重要指标。为探究内蒙古草原生态系统的碳源/汇状况,支撑低碳减排工作,该文基于MODIS净初级生产力(net primary productivity,NPP)和气象数据,采用趋势分析、变异系数、Hurst指数和通径分析法探究了2001—2020年内蒙古草原生态系统NEP指数的时空变化特征及其与影响因素的关系。结果显示: 内蒙古草原生态系统NEP均值整体呈“由西北向东南逐步增加,由大兴安岭向东西两麓逐渐减小”的空间分布格局,2001—2020年间的年均NEP为210.65 gC·m-2·a-1,表现为波动性增强,增速为3.81 gC·m-2·a-1; NEP增加的区域占草原总面积的99.33%,碳汇功能变化较稳定; 69.08%的草原NEP在未来一段时间内呈弱反持续性,碳汇功能可能会减弱; 所选影响因素综合解释了83.7%的NEP变化,其中降水量和最低温度是NEP变化的主导因素。研究结果不仅有助于了解内蒙古草原生态系统的固碳特征,而且对实现“碳达峰,碳中和”的战略目标具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐霞
刘永新
马敏
甄宏超
关键词 内蒙古草原生态系统NEP指数碳源/汇时空变化特征通径分析    
Abstract

Net ecosystem productivity (NEP) serves as a significant index that quantitatively represents the carbon sequestration capacity of ecosystems. This study aims to explore the carbon source/sink status of the Inner Mongolian grassland ecosystem to support the efforts for low carbon and emission reduction. Based on MODIS NPP and meteorological data, and applying the trend analysis, coefficient of variation, Hurst index, and path analysis, this study explored the spatiotemporal variations of the NEP index in the Inner Mongolian grassland ecosystem from 2001 to 2020 and its relationship with influential factors. The results indicate that the overall spatial distribution pattern of average NEP in the Inner Mongolian grassland ecosystem was characterized by a gradual increase from northwest to southeast, and a gradual decrease from the Great Xing’an Range to the eastern and western foothills. The average annual NEP over the past 20 years was 210.65 gC·m-2·a-1, showing a fluctuating increase at a rate of 3.81 gC·m-2·a-1. The areas with increased NEP represented 99.33 % of the total grassland area, suggesting relatively stable changes in carbon sink. However, 69.08 % of NEP in the grassland system is expected to show weak anti-persistence in the near future, suggesting that carbon sink might be weakened. The selected influential factors, dominated by rainfall and minimum temperature, comprehensively explained 83.7 % of NEP variations. The results of this study assist in understanding the carbon sequestration characteristics of the Inner Mongolian grassland ecosystem while holding critical significance for achieving the carbon peak and neutrality goals.

Key wordsInner Mongolian grassland ecosystem    net ecosystem productivity (NEP) index    carbon source/sink    spatiotemporal variations    path analysis
收稿日期: 2024-01-10      出版日期: 2025-07-01
ZTFLH:  TP79  
  S812  
基金资助:内蒙古重点研发和成果转化项目“融合无人机技术的草甸草原生态修复区健康定量评价及功能评估技术研发与应用”(2022YFDZ0026)
通讯作者: 刘永新(1986-),男,硕士研究生,高级工程师,研究方向为遥感数据处理与应用。Email: liuyongxin@mail.cgs.gov.cn
作者简介: 唐 霞(1998-),女,硕士研究生,助理工程师,研究方向为遥感数据处理与GIS应用。Email: tangxia2@mail.cgs.gov.cn
引用本文:   
唐霞, 刘永新, 马敏, 甄宏超. 内蒙古草原生态系统NEP时空变化特征及影响因素研究[J]. 自然资源遥感, 2025, 37(3): 212-220.
TANG Xia, LIU Yongxin, MA Min, ZHEN Hongchao. Exploring the spatiotemporal variations and influential factors of net ecosystem productivity in the Inner Mongolian grassland ecosystem. Remote Sensing for Natural Resources, 2025, 37(3): 212-220.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024019      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/212
Fig.1  研究区地形及稳定草原分布示意图
注: 该图基于审图号为蒙S(2023)027号的标准地图制作,底图无修改,下文同。
数据名称 缩写 单位 空间分辨率 描述
净初级生产力 NPP kgC·m-2·a-1 500 m 通过Smoother算法对NASA MODIS数据进行平滑生成
研究区矢量 审图号: 蒙S(2023)027号
土地利用 30 m 包含10个类别,筛选其中的“草原”一类
平均气温 Tem 1 km
通过Delta空间降尺度方案在中国地区对CRU发布的全球0.5°气候数据以及WorldClim发布的全球高分辨率气候数据降尺度生成
最高气温 Temmax 1 km
最低气温 Temmin 1 km
降水量 Pre mm 1 km
二氧化碳 CO2 1 km 全球化石燃料燃烧产生的二氧化碳排放数据
国内生产总值 GDP 万元/km2 1 km 全球1 km网格化修订的实际国内生产总值
土壤有机质 SOM g/100 g 1 km 基于中国1∶100万比例尺土壤图和土壤剖面图得到的中国土壤有机质数据集
干燥度 AI 1 km 干燥度=潜在蒸散发/降水量
人口 POP 1 km WorldPop数据集
Tab.1  数据来源
Fig.2  内蒙古草原生态系统年均NEP变化
Fig.3  研究区草原生态系统NEP均值空间分布
Fig.4  研究区草原生态系统NEP变化趋势空间分布
Fig.5  研究区草原生态系统NEP波动性空间分布
Fig.6  研究区草原生态系统NEP未来演化趋势预测
因素 相关系数 直接通
径系数
间接通径系数 间接通径
系数之和
决定系数
Temmin Pre DEM POP SOM AI
Temmin -0.627 -0.581 -0.031 0.003 0 0.000 7 -0.008 -0.011 -0.046 0.729 0
Pre 0.692 0.654 0.027 -0.006 0 0.000 4 -0.016 0.033 0.038 0.905 0
DEM -0.318 0.018 -0.105 -0.228 -0.000 1 0.009 -0.011 -0.336 0.011 0
POP -0.008 0.008 -0.051 0.036 -0.000 2 -0.001 0.001 -0.016 0.000 1
SOM -0.023 0.067 0.070 -0.154 0.002 0 -0.000 2 -0.009 -0.091 0.003 0
AI -0.751 -0.038 -0.174 -0.560 0.005 0 -0.000 2 0.016 -0.713 0.057 0
Tab.2  内蒙古草原生态系统NEP影响因素通径分析结果
Fig.7  内蒙古草原生态系统NEP变化通径分析图
[1] Woodwell G M, Whittaker R H. Primary production in terrestrial ecosystems[J]. Integrative and Comparative Biology, 1968, 8(1):19-30.
[2] 曹云, 孙应龙, 姜月清, 等. 黄河流域净生态系统生产力的时空分异特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(11):2101-2110.
doi: 10.16258/j.cnki.1674-5906.2022.11.001
Cao Y, Sun Y L, Jiang Y Q, et al. Analysis on temporal-spatial variations and driving factors of net ecosystem productivity in the Yellow River Basin[J]. Ecology and Environmental Sciences, 2022, 31(11):2101-2110.
[3] Qiu J, Song M, Li Y, et al. High level of ammonium nitrogen increases net ecosystem productivity in a Quercus liaotungensis forest in Northern China[J]. Atmosphere, 2022, 13(6):889.
[4] Sato Y, Nishihara G N, Tanaka A, et al. Variability in the net ecosystem productivity (NEP) of seaweed farms[J]. Frontiers in Marine Science, 2022,9:861932.
[5] You C, Wang Y, Tan X, et al. Inner Mongolia grasslands act as a weak regional carbon sink:A new estimation based on upscaling eddy covariance observations[J]. Agricultural and Forest Meteorology, 2023,342:109719.
[6] Shao Y, Liu H, Du Q, et al. Impact of sky conditions on net ecosystem productivity over a “floating blanket” wetland in Southwest China[J]. Advances in Atmospheric Sciences, 2024, 41(2):355-368.
[7] 田钊, 梁艾琳. 居民碳排放的遥感监测与分析[J]. 自然资源遥感, 2023, 35(4):43-52.doi: 10.6046/zrzyyg.2022310.
Tian Z, Liang A L. Remote sensing-based monitoring and analysis of residential carbon emissions[J]. Remote Sensing for Natural Resources, 2023, 35(4):43-52.doi: 10.6046/zrzyyg.2022310.
[8] Huang Y, Xu X, Zhang T, et al. Multi-temporal and time-lag responses of terrestrial net ecosystem productivity to extreme climate from 1981 to 2019 in China[J]. Remote Sensing, 2023, 16(1):163.
[9] Huang C, Sun C, Nguyen M, et al. Spatio-temporal dynamics of terrestrial Net ecosystem productivity in the ASEAN from 2001 to 2020 based on remote sensing and improved CASA model[J]. Ecological Indicators, 2023,154:110920.
[10] Mao F, Du H, Zhou G, et al. Simulated net ecosystem productivity of subtropical forests and its response to climate change in Zhejiang Province,China[J]. Science of the Total Environment, 2022,838:155993.
[11] 王晴宇. 内蒙古草原植被物候变化及其与净初级生产力关系研究[D]. 长春: 东北师范大学, 2023.
Wang Q Y. Research on the relationship between phenological changes of steppe vegetation and net primary productivity in Inner Mongolia,China[D]. Changchun: Northeast Normal University, 2023.
[12] 侯蒙京. 中国天然草地生产力遥感估算及其时空变化成因研究[D]. 兰州: 兰州大学, 2023.
Hou M J. Study on remote sensing estimation of natural grassland productivity and causes analysis of spatiotemporal changes in China[D]. Lanzhou: Lanzhou University, 2023.
[13] 王明玖. 内蒙古草原生态安全屏障建设的核心是维持碳库稳定[J]. 北方经济, 2023(7):9-12.
Wang M J. The core of grassland ecological security barrier construction in Inner Mongolia is to maintain the stability of carbon pool[J]. Northern Economy, 2023(7):9-12.
[14] 穆少杰, 周可新, 陈奕兆, 等. 内蒙古典型草原不同群落净生态系统生产力的动态变化[J]. 生态学杂志, 2014, 33(4):885-895.
Mu S J, Zhou K X, Chen Y Z, et al. Net ecosystem productivity dynamics of grassland communities on the typical steppe of Inner Mongolia[J]. Chinese Journal of Ecology, 2014, 33(4):885-895.
[15] 董晓宇. 2000—2017年内蒙古荒漠草原植被物候和净初级生产力对气候变化的响应[D]. 西安: 长安大学, 2020.
Dong X Y. Responses of phenology and NPP for desert steppe vegetation in Inner Mongolia to climate change from 2000 to 2017[D]. Xi’an: Changan University, 2020.
[16] Lyu X, Li X, Dou H, et al. Evaluation of grassland carbon pool based on TECO-R model and climate-driving function:A case study in the Xilingol typical steppe region of Inner Mongolia,China[J]. Ecological Indicators, 2020,117:106508.
[17] Zhang L, Cao W, Fan J. Soil organic carbon dynamics in Xilingol grassland of Northern China induced by the Beijing-Tianjin sand source control program[J]. Frontiers of Earth Science, 2017, 11(2):407-415.
doi: 10.1007/s11707-016-0589-9
[18] 关伟涛. 呼伦贝尔草甸草原不同利用方式下有机碳增汇特征研究[D]. 北京: 中国环境科学研究院, 2023.
Guan W T. Study on the characteristic of organic carbon sink enhancement under different disturbances in Hulunbuir meadow steppe[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2023.
[19] 马军, 平丽华. 基于钻石模型的内蒙古草原碳汇产业竞争力研究[J]. 黑龙江畜牧兽医, 2020(8):14-17,23.
Ma J, Ping L H. Study on the competitiveness of Inner Mongolia grassland carbon sequestration industry based on diamond model[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(8):14-17,23.
[20] Liu P, Liu L, Xu X, et al. Carbon footprint and carbon emission intensity of grassland wind farms in Inner Mongolia[J]. Journal of Cleaner Production, 2021,313:127878.
[21] 潘竟虎, 文岩. 中国西北干旱区植被碳汇估算及其时空格局[J]. 生态学报, 2015, 35(23):7718-7728.
Pan J H, Wen Y. Estimation and spatial-temporal characteristics of carbon sink in the arid region of Northwest China[J]. Acta Ecologica Sinica, 2015, 35(23):7718-7728.
[22] 刘永新, 张思源, 边鹏, 等. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2):207-217.doi:10.6046/zrzyyg.2023049.
Liu Y X, Zhang S Y, Bian P, et al. Study on temporal and spatial evolution of land cover types in the Bayannur section of Yellow River Basin from 1989 to 2020[J]. Remote Sensing for Natural Resources, 2024, 36(2):207-217.doi:10.6046/zrzyyg.2023049.
[23] Dai E F, Huang Y, Wu Z, et al. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem[J]. Journal of Geographical Sciences, 2016, 26(3):297-312.
doi: 10.1007/s11442-016-1269-0
[24] 奎国娴, 史常青, 杨建英, 等. 内蒙古草原区植被覆盖度时空演变及其驱动力[J]. 应用生态学报, 2023, 34(10):2713-2722.
doi: 10.13287/j.1001-9332.202310.005
Kui G X, Shi C Q, Yang J Y, et al. Spatial-temporal variations of vegetation coverage and its driving force in Inner Mongolia grassland,China[J]. Chinese Journal of Applied Ecology, 2023, 34(10):2713-2722.
[25] Shi S, Zhu L, Luo Z, et al. Quantitative analysis of the contributions of climatic and anthropogenic factors to the variation in net primary productivity,China[J]. Remote Sensing, 2023, 15(3):789.
[26] Terwayet Bayouli O, Zhang W, Terwayet Bayouli H. Assessment of drought characteristics and its impacts on net primary productivity (NPP) in southeastern Tunisia[J]. Arabian Journal of Geosciences, 2022, 16(1):26.
[27] 刘应帅, 余瑞, 郑彬彬, 等. 海南岛森林植被NEP季节性时空变化规律及气候驱动因素分析[J]. 热带生物学报, 2022, 13(2):166-176.
Liu Y S, Yu R, Zheng B B, et al. Analysis of seasonal spatial and temporal variation patterns of forest vegetation NEP and climate drivers in Hainan Island[J]. Journal of Tropical Biology, 2022, 13(2):166-176.
[28] Zhang J, Hao X, Hao H, et al. Climate change decreased net ecosystem productivity in the arid region of central Asia[J]. Remote Sensing, 2021, 13(21):4449.
[29] Long Y, Jiang F, Deng M, et al. Spatial-temporal changes and dri-ving factors of eco-environmental quality in the Three-North Region of China[J]. Journal of Arid Land, 2023, 15(3):231-252.
[30] 唐霞, 汤军, 杨勇, 等. 基于LRC的城市发展水平时空演变特征及驱动因素分析——以湖北省为例[J]. 自然资源信息化, 2023(1):55-63.
Tang X, Tang J, Yang Y, et al. Analysis on temporal and spatial evolution characteristics and driving factors of urban development level based on LRC:A case of Hubei[J]. Natural Resources Informatization, 2023(1):55-63.
[31] Zhang X, Chen L, Zhou C. Deformation monitoring and trend analysis of reservoir bank landslides by combining time-series InSAR and Hurst index[J]. Remote Sensing, 2023, 15(3):619.
[32] 华朗钦, 张方敏, 翁升恒, 等. 1982—2020年安徽省净生态系统生产力时空格局变化及其成因[J]. 生态学报, 2023, 43(17):7237-7251.
Hua L Q, Zhang F M, Weng S H, et al. Spatio-temporal pattern changes and attribution analysis of net ecosystem productivity in Anhui Province from 1982 to 2020[J]. Acta Ecologica Sinica, 2023, 43(17):7237-7251.
[33] Bao G, Bao Y, Sanjjava A, et al. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale[J]. International Journal of Climatology, 2015, 35(14):4293-4306.
[34] Zhou W, Yang H, Zhou L, et al. Dynamics of grassland carbon sequestration and its coupling relation with hydrothermal factor of Inner Mongolia[J]. Ecological Indicators, 2018,95:1-11.
[35] 曹鹏辉, 齐晓明, 杨雯, 等. 内蒙古土地利用多情景模拟与碳储量预测分析[J]. 干旱区资源与环境, 2023, 37(9):83-90.
Cao P H, Qi X M, Yang W, et al. Multi scenario simulation and prediction of carbon storage for land use types in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2023, 37(9):83-90.
[36] Chen H, Shao L, Zhao M, et al. Grassland conservation programs,vegetation rehabilitation and spatial dependency in Inner Mongolia,China[J]. Land Use Policy, 2017,64:429-439.
[37] 张祯祺, 蔡惠文, 张平平, 等. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1):231-242.doi: 10.6046/zrzyyg.2022042.
Zhang Z Q, Cai H W, Zhang P P, et al. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters Region[J]. Remote Sensing for Natural Resources, 2023, 35(1):231-242.doi: 10.6046/zrzyyg.2022042.
[38] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J]. 生物学通报, 2010, 45(2):4-6.
Du J J, Chen Z W. Method of path analysis with SPSS linear regression[J]. Bulletin of Biology, 2010, 45(2):4-6.
[39] Chen Z, Yu G, Ge J, et al. Roles of climate,vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere[J]. PLoS One, 2015, 10(4):e0125265.
[1] 张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
[2] 李钰溦, 贾坤, 魏香琴, 姚云军, 孙俊, 牟丽秋. 中国北方地区植被覆盖度遥感估算及其变化分析[J]. 国土资源遥感, 2015, 27(2): 112-117.
[3] 常潇, 肖鹏峰, 冯学智, 张学良, 杨永可, 冯威丁. 近30年长江中下游平原典型区耕地覆盖变化[J]. 国土资源遥感, 2014, 26(2): 170-176.
[4] 温少妍, 屈春燕, 单新建, 闫丽莉, 宋冬梅. 祁连山和首都圈卫星热红外背景场变化特征[J]. 国土资源遥感, 2013, 25(3): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发