Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 231-242    DOI: 10.6046/zrzyyg.2022042
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于GEE遥感云平台的三江源植被碳源/汇时空变化研究
张祯祺1(), 蔡惠文1,2(), 张平平1, 王泽琳1, 李婷婷2
1.浙江海洋大学海洋科学与技术学院,舟山 316022
2.国家海洋设施养殖工程技术研究中心,舟山 316022
A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region
ZHANG Zhenqi1(), CAI Huiwen1,2(), ZHANG Pingping1, WANG Zelin1, LI Tingting2
1. College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
2. NationalEngineering Research Center of Marine Aquaculture, Zhoushan 316022, China
全文: PDF(10112 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

净生态系统生产力(net ecosystem productivity, NEP)表征了区域生态系统的固碳能力。文章利用谷歌地球引擎(Google Earth Engine, GEE)平台,基于MODIS和气候数据探讨了2001—2020年20 a间三江源地区NEP时空变化特征及其与气候因子的关系。结果表明: ①三江源区是重要的碳汇功能区,碳汇区占区域总面积的99.89%,碳源区主要分布在西北部,面积仅占0.11%,三江源生态系统NEP总体上呈现东南高西北低、从东南向西北逐渐递减的空间分布格局,且不同生态区之间差异显著; ②20 a间,三江源生态系统NEP总体呈增长趋势,年增长率为1.13 gC/(m2·a),具有巨大的固碳潜力; ③三江源生态系统NEP呈增长趋势的面积占总面积的95.05%,生态工程建设等对植被NEP的改善作用明显,碳汇功能逐步增强且稳定性较高; ④三江源生态系统NEP年平均值为120.93 gC/(m2·a),NEP与年降水量呈正相关,与年平均温度和年太阳辐射呈负相关。气候的暖湿化趋势和生态工程建设均促进了三江源地区植被的碳汇功能,这对于提高陆地生态系统碳汇价值,实现国家“双碳”目标意义重大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张祯祺
蔡惠文
张平平
王泽琳
李婷婷
关键词 净生态系统生产力(NEP)三江源碳源/汇时空变化气候变化    
Abstract

Net ecosystem productivity (NEP) represents the carbon sequestration capacity of a regional ecosystem. Based on the Google Earth Engine (GEE) platform, this study analyzed the temporal and spatial variations in the NEP of the Three-River Headwaters Region (TRHR) from 2001 to 2020 based on the Moderate Resolution Imaging Spectrometer (MODIS) and meteorological data and revealed their relationships with climate factors. The results are as follows: ① The TRHR had an important carbon sink function, with carbon sink areas accounting for 99.89%; The carbon source areas in the TRHR were primarily distributed in the northwest, accounting for only 0.11%. The NEP of the TRHR decreased gradually from the southeast to the northwest and differed significantly among different ecological areas; ② The NEP of the TRHR showed an upward trend overall in the past 20 years, with an annual increasing rate of 1.13 gC/(m2·a), indicating huge carbon sequestration potential; ③ The area of zones whose NEP showed an upward trend accounted for 95.05% of the total area. Ecological engineering construction significantly improved the NEP of vegetation. As a result, the carbon sink function gradually increased and was highly stable; ④ The TRHR had an annual average NEP of 120.93 gC/(m2·a), and the NEP was positively correlated with the annual precipitation but negatively correlated with average annual temperature and annual solar radiation. The warm, humid climate and the ecological engineering construction contributed to the carbon sink function of vegetation in the TRHR. This is of great significance for improving the carbon sink value of the terrestrial ecosystem and achieving the peak carbon dioxide emissions and carbon neutrality of China.

Key wordsnet ecosystem productivity (NEP)    Three-River Headwaters Region    carbon source/sink    temporal-spatial variation    climate change
收稿日期: 2022-02-11      出版日期: 2023-03-20
ZTFLH:  TP79  
基金资助:浙江省自然资源厅“浙江省贻贝资源碳汇调查试点项目”(CTZB-2021110396);浙江省“十三五”第二批教改“面向创新人才培养的《环境海洋学》课程研究性教学模式探索与实践”(jg20190230);浙江省第一批省级课程思政示范课程建设《环境海洋学》和浙江海洋大学研究生教育质量系列工程“《海洋资源与环境》一流课程建设”共同资助。
通讯作者: 蔡惠文(1977-),女,博士,教授,研究方向为海洋碳汇。Email: caihuiwen1977@hotmail.com
作者简介: 张祯祺(1998-),女,硕士研究生,研究方向为海洋遥感。Email: zhangzhenqi1998@126.com
引用本文:   
张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
ZHANG Zhenqi, CAI Huiwen, ZHANG Pingping, WANG Zelin, LI Tingting. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region. Remote Sensing for Natural Resources, 2023, 35(1): 231-242.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022042      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/231
Fig.1  三江源区生态区划及高程示意图
数据 数据集 波段 分辨率 单位 提供者
NPP MOD17A3HGF V6 Npp 500 m kg·C/m2 NASA LP DAAC at the USGS EROS Center
气温 ERA5-Land temperature_2m 0.1° Climate Data Store
降水 CHIRPS Precipitation 0.05° mm UCSB/CHG
太阳辐射 ERA5-Land surface_net_solar_radiation 0.1° J/m2 Climate Data Store
Tab.1  基于GEE平台的数据清单
Fig.2  2001—2020年三江源区年NEP均值年际变化
Fig.3  三江源区碳源/汇面积占比变化趋势
Fig.4  不同生态区年均NEP年际变化趋势
Fig.5  三江源区2001—2020年年均NEP空间分布
slope趋势分级 变化等级 面积/km2 比例/%
[-1,-0.477) 明显变差 6 335.17 2.09
[-0.477,0) 轻微变差 8 635.27 2.85
[0,0.484) 基本稳定 42 243.85 13.96
[0.484,0.813) 轻微好转 44 727.26 14.79
[0.813,1] 明显好转 200 558.45 66.30
Tab.2  三江源区2001—2020年NEP趋势变化统计
Fig.6  三江源区2001—2020年NEP变化趋势空间分布
CV变异系数分级 稳定性等级 面积/km2 比例/%
[-0.078,0.138) 111 203.09 36.76
[0.138,0.219) 较高 114 947.61 38.00
[0.219,0.339) 中等 56 001.25 18.51
[0.339,0.559) 较低 13 818.14 4.57
[0.559,0.75) 6 529.90 2.16
Tab.3  三江源区2001—2020年NEP稳定性变化统计
Fig.7  三江源区2001—2020年NEP稳定性空间分布
Fig.8  三江源区NEP与气温、降水和太阳辐射偏相关系数的空间分布
Fig.9  2001—2020年三江源各生态区降水、气温、太阳辐射对NEP影响的面积百分比
[1] Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake[J]. Nature Communications, 2016, 7:13428.
doi: 10.1038/ncomms13428
[2] 唐希颖, 武红, 董金玮, 等. 沙化和退化状态对甘南草地生态系统固碳的影响[J]. 生态学杂志, 2022, 41(2):278-286.
Tang X Y, Wu H, Dong J W, et al. Effects of desertification and degradation on carbon sequestration of grassland ecosystem in Gannan[J]. Chinese Journal of Ecology, 2022, 41(2):278-286.
[3] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574.
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica(Vitae), 2022, 52(4):534-574.
[4] Woodwell G M, Whitaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199:141-146.
pmid: 17812932
[5] 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15):5306-5317.
Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15):5306-5317.
[6] 陈雪娇, 周伟, 杨晗. 2001—2017年三江源区典型草地群落碳源/汇模拟及动态变化分析[J]. 干旱区地理, 2020, 43(6):1583-1592.
Chen X J, Zhou W, Y H. Simulation and dynamic change of carbon source/sink in the typical grassland communities in the Three River Source area from 2001 to 2017[J]. Arid Land Geography, 2020, 43(6):1583-1592.
[7] 王苗苗. 三江源区高寒草甸草产量遥感监测及植物碳汇动态研究[D]. 兰州: 兰州大学, 2011.
Wang M M. Study of the alpine meadow yield monitoring and the dynamic of vegetation carbon sequestration in the source region of Yangtze,Yellow and Lancang Rivers[D]. Lanzhou: Lanzhou University, 2011.
[8] 郑飞鸽, 易桂花, 张廷斌, 等. 三江源植被碳利用率动态变化及其对气候响应[J]. 中国环境科学, 2020, 40(1):401-413.
Zheng F G, Yi G H, Zhang T B, et al. Study on spatio-temporal dynamics of vegetation carbon use efficiency and its response to climate factors in Three-River Headwaters region[J]. China Environmental Science, 2020, 40(1):401-413.
[9] 苏淑兰. 三江源草地生态系统碳储量及其影响因素[D]. 兰州: 兰州大学, 2015.
Su S L. Carbon storage and its influencing factors of the grassland in Three River Sources Region[D]. Lanzhou: Lanzhou University, 2015.
[10] 张继平, 刘春兰, 郝海广, 等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报, 2015, 24(1):8-13.
doi: 10.16258/j.cnki.1674-5906.2015.01.002
Zhang J P, Liu C L, Hao H G, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences, 2015, 24(1):8-13.
[11] 路秋玲, 李愿会. 三江源自然保护区森林植被层碳储量及碳密度研究[J]. 林业资源管理, 2018(4):146-153.
Lu Q L, Li Y H. Study on carbon storage and carbon density of forest vegetation in Sanjiangyuan Nature Reserve[J]. Forest Resources Management, 2018(4):146-153.
[12] 李宗洮. 青海三江源地区农业碳排放影响因素及减排对策研究[D]. 西宁: 青海大学, 2020.
Li Z T. Study on factors affecting agricultural carbon emission and countermeasures for emission reduction in Sanjiangyuan region of Qinghai[D]. Xining: Qinghai University, 2020.
[13] 任小丽, 何洪林, 张黎, 等. 2001—2010年三江源区草地净生态系统生产力估算[J]. 环境科学研究, 2017, 30(1):51-58.
Ren X L, He H L, Zhang L, et al. Net ecosystem production of alpine grasslands in the Three-River Headwaters region during 2001—2010[J]. Research of Environmental Sciences, 2017, 30(1):51-58.
[14] Long T, Zhang Z, He G, et al. 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine[J]. Remote Sensing, 2019, 11(5): 489.
doi: 10.3390/rs11050489
[15] 陈炜, 黄慧萍, 田亦陈, 等. 基于Google Earth Engine平台的三江源地区生态环境质量动态监测与分析[J]. 地球信息科学学报, 2019, 21(9):1382-1391.
doi: 10.12082/dqxxkx.2019.190095
Chen W, Huang H P, Tian Y C, et al. Monitoring and assessment of the eco-environment quality in the Sanjiangyuan region based on Google Earth Engine[J]. Journal of Geo-Information Science, 2019, 21(9):1382-1391.
[16] 傅伯杰, 刘国华, 陈利顶, 等. 中国生态区划方案[J]. 生态学报, 2001(1):1-6.
Fu B J, Liu G H, Chen L D, et al. Scheme of ecological regionalization in China[J]. Acta Ecologica Sinica, 2001(1):1-6.
[17] 郑修诚, 周斌, 雷惠, 等. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1):18-26.doi: 10.6046/zrzyyg.2022021.
doi: 10.6046/zrzyyg.2022021
Zheng X C, Zhou B, Li H, et al. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1):18-26.doi: 10.6046/zrzyyg.2022021.
doi: 10.6046/zrzyyg.2022021
[18] 戴尔阜, 黄宇, 吴卓, 等. 内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J]. 地理学报, 2016, 71(1):21-34.
doi: 10.11821/dlxb201601002
Dai E F, Huang Y, Wu Z, et al. Spatial-temporal features of carbon source-sink and its relationship with climate factors in Inner Mongolia grassland ecosystem[J]. Acta Geographica Sinica, 2016, 71(1):21-34.
doi: 10.11821/dlxb201601002
[19] 巩杰, 张影, 钱彩云. 甘肃白龙江流域净生态系统生产力时空变化[J]. 生态学报, 2017, 37(15):5121-5128.
Gong J, Zhang Y, Qian C Y. Temporal and spatial distribution of net ecosystem productivity in the Bailongjiang Watershed of Gansu Province[J]. Acta Ecologica Sinica, 2017, 37(15):5121-5128.
[20] 周夏飞, 於方, 曹国志, 等. 2001—2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系[J]. 水土保持研究, 2019, 26(1):76-81.
Zhou X F, Yu F, Cao G Z, et al. Spatiotemporal features of carbon source-sink and its relationship with climate factors in Qinghai-Tibet Plateau grassland ecosystem during 2001—2015[J]. Research of Soil and Water Conservation, 2019, 26(1):76-81.
[21] Pei Z Y, Ouyang H, Zhou C P, et al. Carbon balance in an alpine steppe in the Qinghai-Tibet Plateau[J]. Journal of Integrative Plant Biology, 2009, 51(5):521-526.
doi: 10.1111/jipb.2009.51.issue-5
[22] 潘竟虎, 文岩. 中国西北干旱区植被碳汇估算及其时空格局[J]. 生态学报, 2015, 35(23):7718-7728.
Pan J H, Wen Y. Estimation and spatial-temporal characteristics of carbon sink in the arid region of northwest China[J]. Acta Ecologica Sinica, 2015, 35(23):7718-7728.
[23] 张璐, 王静, 施润和. 2000—2010年东北三省碳源汇时空动态遥感研究[J]. 华东师范大学学报(自然科学版), 2015(4):164-173.
Zhang L, Wang J, Shi R H. Temporal-spatial variations of carbon sink / source in Northeast China from 2000 to 2010[J]. Journal of East China Normal University(Natural Science), 2015(4):164-173.
[24] 童晓伟, 王克林, 岳跃民, 等. 桂西北喀斯特区域植被变化趋势及其对气候和地形的响应[J]. 生态学报, 2014, 34(12):3425-3434.
Tong X W, Wang K L, Yue Y M, et al. Trends in vegetation and their responses to climate and topography in northwest Guangxi[J]. Acta Ecologica Sinica, 2014, 34(12):3425-3434.
[25] 刘逸滨, 刘宝元, 成城, 等. 退耕还林草20年来榆林市植被覆盖度时空变化及影响因素分析[J]. 水土保持学报, 2022, 36(2):197-208,218.
Liu Y B, Liu B Y, Cheng C, et al. Spatio-temporal changes and influencing factors of vegetation coverage in Yulin city during the past 20 years since the implementation of the “Grain for Green” Program[J]. Journal of Soil and Water Conservation, 2022, 36(2):197-208,218.
[26] 冯娴慧, 曾芝琳, 张德顺. 基于MODIS NDVI数据的粤港澳大湾区植被覆盖时空演变[J]. 中国城市林业, 2022, 20(1):1-6,28.
Feng X H, Zeng Z L, Zhang D S. Temporal-spatial evolution of vegetation coverage in Guangdong-HongKong-Macao Greater Bay Area based on MODIS NDVI data[J]. Journal of Chinese Urban Forestry, 2022, 20(1):1-6,28.
[27] 张亮, 蒋军. 基于MODIS-NDVI的地表植被时空变化特征及其与环境因子的关系[J]. 安徽农业科学, 2022, 50(4):57-63.
Zhang L, Jiang J. Temporal and spatial variation characteristics of surface vegetation and its relationship with environmental factors based on MODIS-NDVI[J]. Journal of Anhui Agricultural Sciences, 2022, 50(4):57-63.
[28] 范微维. 2000—2014年三江源区植被NDVI时空变化特征与气候变化响应分析[D]. 成都: 成都理工大学, 2017.
Fan W W. Analysis of NDVI changes and its climate driving factors in the Three River-Headwater region during 2000—2014[D]. Chengdu: Chengdu University of Technology, 2017.
[29] 张翀, 李强, 李忠峰. 三江源地区人类活动对植被覆盖的影响[J]. 中国人口·资源与环境, 2014, 24(5):139-144.
Zhang C, Li Q, Li Z F. Influence of human activities on variation of vegetation cover in the Three-River Source region[J]. China Population,Resources and Environment, 2014, 24(5):139-144.
[30] 邵全琴, 刘纪远, 黄麟, 等. 2005—2009年三江源自然保护区生态保护和建设工程生态成效综合评估[J]. 地理研究, 2013, 32(9):1645-1656.
doi: 10.11821/dlyj201309007
Shao Q Q, Liu J Y, H L, et al. Integrated assessment on the effectiveness of ecological conservation in Sanjiangyuan National Nature Reserve[J]. Geographical Research, 2013, 32(9):1645-1656.
doi: 10.11821/dlyj201309007
[31] 李璠, 徐维新. 2000—2015年青海省不同功能区NDVI时空变化分析[J]. 草地学报, 2017, 25(4):701-710.
doi: 10.11733/j.issn.1007-0435.2017.04.003
Li F, Xu W X. Spatial and temporal variation of NDVl in different functional areas of Qinghai from 2000 to 2015[J]. Acta Agrestia Sinica, 2017, 25(4):701-710.
[32] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19):5495-5504.
Li H X, Liu G H, Fu B J. Response of vegetation to climate change and human activity based on NDVl in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2011, 31(19):5495-5504.
[33] 刘宪锋, 任志远, 林志慧, 等. 2000-2011年三江源区植被覆盖时空变化特征[J]. 地理学报, 2013, 68(7):897-908.
Liu X F, Ren Z Y, Lin Z H, et al. The spatial-temporal changes of vegetation coverage in the Three-River Headwater region in recent 12 years[J]. Acta Geographica Sinica, 2013, 68(7):897-908.
[34] Shi P J, Sun S, Wang M, et al. Climate change regionalization in China (1961—2010)[J]. Science China Earth Sciences, 2014, 57(11): 2676-2689.
doi: 10.1007/s11430-014-4889-1
[35] Bao G, Bao Y H, Sanjjava A, et al. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale[J]. International Journal of Climatology, 2015, 35(14): 4293-4306.
doi: 10.1002/joc.4286
[36] Sun J, Zhou T C, Liu M, et al. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2020, 29(1): 50-64.
doi: 10.1111/geb.v29.1
[37] Zhang X L, Tan Y L, Li A, et al. Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe[J]. Scientific Reports, 2015, 5:15549.
doi: 10.1038/srep15549
[38] Zhang X L, Tan Y L, Zhang B W, et al. The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe[J]. Ecosphere, 2017, 8(1):e01655.
doi: 10.1002/ecs2.1655
[39] 张晓琳, 翟鹏辉, 黄建辉. 降水和氮沉降对草地生态系统碳循环影响研究进展[J]. 草地学报, 2018, 26(2):284-288.
doi: 10.11733/j.issn.1007-0435.2018.02.003
Zhang X L, Zhai P H, Huang J H. Advances in the influences of precipitation and nitrogen deposition change on the carbon cycle of grassland ecosystem[J]. Acta Agrestia Sinica, 2018, 26(2):284-288.
[40] 陈晨, 王义民, 黎云云, 等. 黄河流域1982—2015年不同气候区植被时空变化特征及其影响因素[J]. 长江科学院院报, 2022, 39(2):56-62,81.
Chen C, Wang Y M, Li Y Y, et al. Vegetation changes and influencing factors in different climatic regions of Yellow River basin from 1982 to 2015[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(2):56-62,81.
[41] 贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应[J]. 生态学报, 2019, 39(14):5058-5069.
Jia J H, Liu H Y, Lin Z S. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change[J]. Acta Ecologica Sinica, 2019, 39(14):5058-5069.
[42] 商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区气温和降水的时空变化特征[J]. 干旱区研究, 2018, 35(1):68-76.
Shang S S, Lian L S, Ma T, et al. Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years[J]. Arid Zone Research, 2018, 35(1):68-76.
[1] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[2] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2): 295-305.
[3] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[4] 王雅婷, 朱长明, 张涛, 张新, 石智宇. 2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析[J]. 自然资源遥感, 2022, 34(4): 225-234.
[5] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[6] 马山木, 甘甫平, 吴怀春, 闫柏琨. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
[7] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
[8] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[9] 范田亿, 张翔, 黄兵, 钱湛, 姜恒. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4): 209-218.
[10] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[11] 杨蕴雪, 张艳芳. 基于空间距离指数的延河流域生态敏感性时空演变特征[J]. 自然资源遥感, 2021, 33(3): 229-237.
[12] 魏浩翰, 许仁杰, 杨强, 周权平. 多源卫星测高数据监测太湖水位变化及影响分析[J]. 自然资源遥感, 2021, 33(3): 130-137.
[13] 陈虹, 郭兆成, 贺鹏. 1988—2018年间洱海流域植被覆盖度时空变换特征探究[J]. 国土资源遥感, 2021, 33(2): 116-123.
[14] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
[15] 王佳新, 萨楚拉, 毛克彪, 孟凡浩, 罗敏, 王牧兰. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1): 231-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发