Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (2): 187-192    DOI: 10.6046/gtzyyg.2017.02.27
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于HyMap数据的浮水植被信息提取
陶婷1, 阮仁宗1, 岁秀珍2, 王玉强3, 林鹏1
1.河海大学地球科学与工程学院,南京 211100;
2.浙江省义乌市勘测设计研究院,义乌 322000;
3. 山东省减灾中心,济南 250000
Extraction of floating-leaved vegetation information based on HyMap data
TAO Ting1, RUAN Renzong1, SUI Xiuzhen2, WANG Yuqiang3, LIN Peng1
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China;
2. Yiwu City, Zhejiang Province Survey and Design Institute, Yiwu 322000, China;
3. Shandong Province Disaster Reduction Center, Ji’nan 250000, China;
全文: PDF(766 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 以美国加利福尼亚州萨克拉门托—圣华金三角洲为研究区,利用2007年6月空间分辨率3 m的HyMap高光谱数据,根据湿地植被的光谱差异,结合地面实况数据,对植被的“三边”参数进行分析,选取合适的植被指数并结合“三边”参数特征,构建决策树模型,提取出研究区的浮水植被,并与最大似然法的分类结果进行比较。结果表明: 利用决策树模型分类的总体精度达到82.68%,与最大似然法相比,总精度提高了6%,很好地识别出了研究区湿地植被中的浮水植被。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩丽蓉
关键词 阈值掩模图像干扰信息重叠ERDAS    
Abstract:In this paper, Sacramento, California - San Joaquin River Delta was taken as the study area, and HyMap hyperspectral data with 3 m spatial resolution acquired in June 2007 combined with ground truth data were used for pattern recognition of floating-leaved vegetation in the study area. The study was based on the spectral differences of wetland vegetations, and the “trilateral” parameters of vegetation were analyzed. Then the authors selected suitable vegetation indices combined with “trilateral” parameter features and built a decision tree model to extract the floating-leaved vegetation of the study area in comparison with the maximum likelihood classification results. The results show that the use of decision tree classification model can achieve overall accuracy of 82.68%, and that, compared with the maximum likelihood method, the total accuracy was improved by 6%, which can well identify the floating-leaved vegetation in the wetland vegetation of the study area.
Key wordsthreshold    mask image    interference information    overlap    ERDAS
收稿日期: 2015-10-24      出版日期: 2017-05-03
基金资助:中国科学院战略性先导科技专项项目“应对气候变化的碳收支认证及相关问题”(编号: XDA05050106)资助
作者简介: 陶 婷(1991-),女,硕士研究生,主要从事遥感与GIS应用研究。Email: taoting19911116@163.com。
引用本文:   
陶婷, 阮仁宗, 岁秀珍, 王玉强, 林鹏. 基于HyMap数据的浮水植被信息提取[J]. 国土资源遥感, 2017, 29(2): 187-192.
TAO Ting, RUAN Renzong, SUI Xiuzhen, WANG Yuqiang, LIN Peng. Extraction of floating-leaved vegetation information based on HyMap data. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 187-192.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.27      或      https://www.gtzyyg.com/CN/Y2017/V29/I2/187
[1] Marion L,Paillisson J M.A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated Lake[J].Aquatic Botany,2003,75(3):249-260.
[2] Hestir E L,Khanna S,Andrew M E,et al.Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem[J].Remote Sensing of Environment,2008,112(11):4034-4047.
[3] Andrew M E,Ustin S L.The role of environmental context in mapping invasive plants with hyperspectral image data[J].Remote Sensing of Environment,2008,112(12):4301-4317.
[4] Hestir E L,Khanna S,Andrew M E,et al.Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem[J].Remote Sensing of Environment,2008,112(11):4034-4047.
[5] 客 涵.南四湖沉水、浮叶植物群落结构与水环境因子相关研究[D].济南:山东大学,2014.
Ke H.Research on Relationship Among Submerged,Floating Plant Community Structure and Water Environmental Factors[D].Ji’nan:Shandong University,2014.
[6] Matthews M W,Bernard S,Robertson L.An algorithm for detecting trophic status(chlorophyll-a),cyanobacterial-dominance,surface scums and floating vegetation in inland and coastal waters[J].Remote Sensing of Environment,2012,124:637-652.
[7] Rauch A,Fesl C,Schagerl M.Influence of environmental variables on algal associations from a floating vegetation mat(Schwingmoor Lake Lunzer Obersee,Austria)[J].Aquatic Botany,2006,84(2):129-136.
[8] Andrew M E,Ustin S L.Habitat suitability modelling of an invasive plant with advanced remote sensing data[J].Diversity and Distributions,2009,15(4):627-640.
[9] 柴 颖,阮仁宗,傅巧妮.高光谱数据湿地植被类型信息提取[J].南京林业大学学报:自然科学版,2015,39(1):181-184.
Chai Y,Run R Z,Fu Q N.Extraction of wetland vegetation information using hyperspectral image data[J].Journal of Nanjing Forestry University:Natural Sciences Edition,2015,39(1):181-184.
[10] Gitelson A A,Kaufman Y J,Stark R,et al.Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing of Environment,2002,80(1):76-87.
[11] Underwood E C,Ustin S L,Ramirez C M.A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California[J].Environmental Management,2007,39(1):63-83.
[12] Sims D A,Gamon J A.Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance:A comparison of indices based on liquid water and chlorophyll absorption features[J].Remote Sensing of Environment,2003,84(4):526-537.
[13] 潘 琛,杜培军,张海荣.决策树分类法及其在遥感图像处理中的应用[J].测绘科学,2008,33(1):208-211.
Pan C,Du P J,Zhang H R.Decision tree classification and its application in processing of remote sensing images[J].Science of Surveying and Mapping,2008,33(1):208-211.
[14] 赵 萍.基于知识的江南典型区土地利用/覆被分类研究[D].南京:南京大学,2003.
Zhao P.Study on Knowledge-Based Jiangnan Typical Area Land Use/Cover Classification[D].Nanjing:Nanjing University,2003.
[15] 韦 玮.基于多角度高光谱CHRIS数据的湿地信息提取技术研究[D].北京:中国林业科学研究院,2011.
Wei W.Study on Wetland Information Extraction Using Multi-Angle Hyperspectral CHRIS Image Data[D].Beijing:Chinese Academy of Forestry,2011.
[1] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120.
[2] 苏龙飞, 李振轩, 高飞, 余敏. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1): 9-11.
[3] 朱士才, 翟晓彤, 王宗伟. 基于Mean Shift的大批量遥感影像分割方法[J]. 国土资源遥感, 2020, 32(1): 13-18.
[4] 黄巍, 黄辉先, 徐建闽, 刘嘉婷. 基于Canny边缘检测思想的改进遥感影像道路提取方法[J]. 国土资源遥感, 2019, 31(1): 65-70.
[5] 贾祎琳, 张文, 孟令奎. 面向GF-1影像的NDWI分割阈值选取方法研究[J]. 国土资源遥感, 2019, 31(1): 95-100.
[6] 郭拯危, 王乐, 宋国磊. 基于混合模糊的SAR图像水陆分割算法[J]. 国土资源遥感, 2018, 30(4): 62-67.
[7] 王学成, 杨飞, 高星, 张英慧. 基于阈值比值法的森林冰雪冻害遥感评估——以湖南省为例[J]. 国土资源遥感, 2018, 30(3): 196-203.
[8] 刘尚旺, 郜刘阳, 王博. 联合双边滤波器和小波阈值收缩去噪算法研究[J]. 国土资源遥感, 2018, 30(2): 114-124.
[9] 李峰, 梁汉东, 赵小平, 白江伟, 崔玉坤. 内蒙古乌达煤田煤火治理效果的遥感监测与评估[J]. 国土资源遥感, 2017, 29(3): 217-223.
[10] 李佳俊, 钟若飞. 轻小型机载LiDAR的航线设计[J]. 国土资源遥感, 2017, 29(2): 97-103.
[11] 韩丽蓉. 掩模图像生成时阈值取值的合理性探讨[J]. 国土资源遥感, 2017, 29(2): 22-28.
[12] 杨青山, 张华. 融合像元形状和光谱信息的高分遥感图像分类新方法[J]. 国土资源遥感, 2016, 28(4): 64-70.
[13] 黄维, 黄进良, 王立辉, 胡砚霞, 韩鹏鹏. 基于PCA的变化向量分析法遥感影像变化检测[J]. 国土资源遥感, 2016, 28(1): 22-27.
[14] 张倩. 基于双重离散小波变换的遥感图像去噪算法[J]. 国土资源遥感, 2015, 27(4): 14-20.
[15] 李华胜, 黄平平, 苏莹. 一种提取遥感影像中道路信息的方法[J]. 国土资源遥感, 2015, 27(2): 56-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发