Surface albedos of different land use types in the Junggar Basin
DENG Xiaojin1(), JING Changqing1(), GUO Wenzhang1, Yan Yujiang2, CHEN Chen1
1. College of Grassland and Environment Sciences, Xinjiang Agricultural University, Key Laboratory of Grassland Resources and Ecology of Xinjiang, Urumqi 830052, China 2. School of Economics and Busines, Xinjiang Agricultural University, Urumqi 830052, China
This study focuses on the surface albedo characteristics of different land use types in the Junggar Basin, aiming to provide a scientific basis for the revealment of the biogeophysical mechanisms of different land use types on a regional scale. Based on the surface albedo data during 2000-2018 obtained through remote sensing inversion and the land use data of 2000, 2010, and 2018, this study analyzed the temporal and spatial variation characteristics and interannual variation trend of the surface albedos for short wave (0.3~2.5 μm), near infrared (0.76~3.0 μm) and visible light (0.35~0.76 μm) of different land use types in the Junggar Basin. It will provide a scientific basis for the understanding of the albedo characteristics of different land use types and reveal the impacts of cover change on climate change on a regional scale. The results are as follows. The surface albedos of different land use types have distinctly different characteristics for different wavebands. The surface albedos of the first- and second-level land use types are in the order of near infrared > short wave > visible light, except for the second-level land use types of lakes and reservoirs. For the interannual change trend, the surface albedos of different land use types for the three bands during 2010—2018 are slightly higher than that during 2000—2010. Moreover, all the first-level land use types in the short waveband during 2010—2018 passed the significance test of p=0.05. The interannual variations of surface albedos of land use types in the Junggar Basin over the past 18 years showed a weak growth trend in terms of the variation rate and were slight and stable on the whole in terms of the rate variation. The results of this study will lay a foundation for the research into the surface spectral radiation and energy balance of the study area.
邓小进, 井长青, 郭文章, 闫豫疆, 陈宸. 准噶尔盆地不同土地利用类型地表反照率研究[J]. 自然资源遥感, 2021, 33(3): 173-183.
DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. Surface albedos of different land use types in the Junggar Basin. Remote Sensing for Natural Resources, 2021, 33(3): 173-183.
Lawler J J, Lewis J D, Nelson E, et al. Projected land-use change impacts on ecosystem services in the United States[J]. Proceedings of the National Academy of Sciences, 2014, 111(20):7492-7497.
doi: 10.1073/pnas.1405557111
Liu J Y, Ning J, Kuang W H. Temporal and spatial patterns and new features of land use change in China from 2010 to 2015[J]. Journal of Geographical Sciences, 2018, 73(5):789-802.
[3]
Betts R A, Falloon P, Goldewijk K K, et al. Biogeophysical effects of land use on climate:Model simulations of radiative forcing and largescale temperature change[J]. Agricul-tural and Forest Meteorology, 2007, 142(2-4):216-233.
[4]
Prestele R, Arneth A, Bondeau A, et al. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assess-ments[J]. Earth System Dynamics, 2017, 8(2):1-28.
doi: 10.5194/esd-8-1-2017
Zhai J, Liu R G, Liu J Y, et al. Radiative forcing over China due to albedo change caused by land cover change during 1990—2010[J]. Acta Geographica Sinica, 2013, 68(7):875-885.
[6]
Steffen W, Rockström J, Richardson K, et al. Trajectories of the Earth system in the anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33):8252-8259.
doi: 10.1073/pnas.1810141115
[7]
Betts R A. Biogeophysical impacts of land use on present-day climate:Near-surface temperature change and radiative forcing[J]. Atmospheric Science Letters, 2000, 2(1-4):39-51.
doi: 10.1006/asle.2001.0023
[8]
Hansen J, Sato M, Ruedy R. Radiative forcing and climate response[J]. Journal of Geophysical Research, 1997, 102(1997):6831-6864.
doi: 10.1029/96JD03436
[9]
Brovkin V, Raddatz T, Reick C H, et al. Global biogeophysical interactions between forest and climate[J]. Geophysical Research Letters, 2009, 36(7):251-254.
[10]
Barnes C A, Roy D P. Radiative forcing over the conterminous united states due to contemporary land cover land use albedo change[J]. Geophysical Research Letters, 2008, 35(9):1-6.
[11]
Myhre G, Myhre A. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes[J]. Journal of Climate, 2003, 16(10):1511-1524.
doi: 10.1175/1520-0442(2003)016<1511:UIRFDT>2.0.CO;2
[12]
Myhre G, Kvalevag M M, Schaaf C B. Radiative forcing due to anthropogenic vegetation change based on modis surface albedo data[J]. Geophysical Research Letters, 2005, 32(21):1-4.
[13]
Davin E L, Noblet-Ducoudré N, Friedlingstein P. Impact of land cover change on surface climate:Relevance of the radiative forcing concept[J]. Geophysical Research Letters, 2007, 34(13):1-5.
Li Z C, Wei Z G, Wen J, et al. Analysis of land-surface radiation characteristic in winter-wheat field over the loess plateau mesa in China[J]. Acta Energiae Solaris Sinica, 2009, 30(1):12-18.
Zheng Z Y, Wei Z G, Li Z C, et al. Study of parameterization of surface albedo of bare soilover the Gobi desert in the Dunhuang region[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2):297-308.
Yang J X, Li Z C, Wei Z G, et al. Characteristics of solar spectral radiation and corresponding albedo in sparse vegetation region[J]. Acta Energiac Solaris Sinica, 2017, 38(3):852-859.
Zou J L, Ji G L. The spectral characteristics of global radiation and surface albedo on Northern Tibetan plateau[J]. Acta Energiae Solaris Sinica, 1996, 17(12):113-117.
[18]
Zheng Z Y, Dong W J, Li Z C, et al. Observational study of surface spectral radiation and corresponding albedo over Gobi,desert,and bare loess surfaces in northwestern China[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(3):883-896.
doi: 10.1002/2014JD022516
Zheng Z Y, Wei Z G, Li Z C, et al. Characteristics of solar spectral radiation and albedo during early autumn in Dunhuangn Gobl[J]. Acta Energlae Solaris Sinica, 2012, 33(11):1938-1942.
Liu Q Q, Cui Y P, Liu S J, et al. Study on surface albedo of spectral radiation of different land use types in China[J]. Remote Sensing Technology and Application, 2019, 34(1):46-56.
[21]
许鹏, 新疆草地资源及其应用[M]. 乌鲁木齐: 新疆科技卫生出版社, 1993: 205.
Xu P. Grassland resources and its application in Xinjiang[M]. Urumqi: Xinjiang Science and Technology Health Press, 1993: 205.
[22]
Vermote E F, Kotchenova S Y. MOD09(surface reflectance) user’s guide[EB/OL].(2008-3)[2012-7]. http://modis-sr.ltdri.org.
[23]
Wang K, Liu J, Zhou X, et al. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau[J]. Journal of Geophysical Research, 2004, 109(D5):1-9.
[24]
Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(2):977-997.
[25]
Liang S L. Validating MODIS land surface reflectance and albedo products:Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1-2):149-162.
doi: 10.1016/S0034-4257(02)00092-5
Wang K C, Liu J M, Zhou X J, et al. Retrieval of the surface albedo under clear sky over China and its characteristics analysis by using MODIS satellite date[J]. Chinese Journal of Atomospheric Sciences, 2004, 28(6):941-952.
Chen A J, Bian L G, Liu Y J, et al. Using MODIS date to retrieve albedo over the Qinghai-Tibet plateau[J]. Tournal of Nanjing Insitute of Meteorology, 2009, 32(2):222-229.
[28]
Liang S, Shuey, C J, Rass A L, et al. Narrowband to broadband conversions of land surface albedo:II[J]. Validation,Remote Sensing of Environment, 2003, 84(1),25-41.
[29]
Lewis P, Barnsley M J. Influence of the sky radiance distribution on various formulations of the earth surface albedo[C]// Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing.France:ISPRS, 1994,707-715.
Xu X L, Pang Z G, Yu X F, et al. Spatial-temporal pattern analysis of land use/cover[M]. Beijing: Scientific and Technical Documentation Press, 2014:90-108.
[31]
魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999,43-47.
Wei F Y. Modern climate statistical diagnosis and prediction technology[M]. Beijing: Meteorological Press, 1999,43-47.
Zheng Y H, Huang L, Zhai J. Impacts of land cover changes on surface albedo in China,the United States,India and Brazil[J]. Journal of Remote Sensing, 2020, 24(7):917-932.
[33]
Cao M, Prince S D, Tao B, et al. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and Atomospheric CO2[J]. Telus, 2010, 57(3):2010-217.
Tang X Y, Cui Y P, Li N, et al. Land use intensity and radiation feedback in Beijing from 2000 to 2015[J]. Remote Sensing Technology and Application, 2020, 35(3):587-595.
Zuo H C, Lyu S H, Hu Y Q. Variations trend of yearly mean air temperature and precipitation in China in the last 50 years[J]. Plateau Meteorology, 2004, 23(2):238-244.
Yang X C, Zhang Y L, Liu L S, et al. Sensitivity of surface air temperature change to land types in China[J]. Science in China Series D:Earth Sciences, 2009, 39(5):638-646.