Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 19-25    DOI: 10.6046/zrzyyg.2020382
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于时间序列遥感数据植被物候信息提取软件发展现状
钞振华(), 车明亮(), 侯胜芳
南通大学地理科学学院,南通 226007
Brief review of vegetation phenological information extraction software based on time series remote sensing data
CHAO Zhenhua(), CHE Mingliang(), HOU Shengfang
School of Geographic Science, Nantong University, Nantong 226007, China
全文: PDF(2942 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

物候是植被生理生态过程与环境变化相互作用的体现,研发基于时间序列遥感数据的植被物候信息提取软件具有现实意义。现有软件主要是国外科研人员结合特定遥感数据发展的,集成的数据平滑重建方法不同,服务的对象也有差异。对现有软件功能和特点的比较分析有助于用户在选用软件时更有针对性,也可为研发植被物候软件提供参考。在简述遥感监测植被物候原理和重建时间序列遥感数据常用数据平滑方法后,文章汇总了多款集成重建方法和物候提取方法于一体的植被物候软件。重点介绍了TIMESAT,SPIRITS和DATimeS软件,比较分析了这些软件的功能特点。最后,结合遥感大数据发展和植被物候监测应用需求的背景,针对发展友好图形用户界面且汉化版的应用软件进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钞振华
车明亮
侯胜芳
关键词 数据噪声时间序列重建TIMESATSPIRITS机器学习DATimeS    
Abstract

Vegetation phenology reflects the interactions between the physiological and ecological processes of vegetation and environmental changes and thus it is practically significant to research and develop the software used to extract the vegetation phenological information based on time series remote sensing data. The existing pieces of software mainly include those developed by foreign R&D staff based on specific remote sensing data. They integrate different methods for data smoothing and reconstruction and serve different users. The analysis and comparison of the functions and characteristics of the existing pieces of software will assist users to select more targeted software and can also provide references for the R&D of the software for vegetation phenology monitoring. This paper first briefly introduces the monitoring principles of vegetation phenological information using remote sensing data and commonly used data smoothing methods for the reconstruction of time series remote sensing data. Then it summarizes multiple pieces of professional software for vegetation phenology monitoring that integrate the reconstruction methods and phenological information extraction methods. Most especially, it introduces the software TIMESAT, SPIRITS, and DATimeS in detail and compares and analyzes their functions and characteristics. Finally, it puts forward the prospect of developing localization application software with user-friendly graphical user interfaces according to the development of remote sensing big data and the demand for vegetation phenology monitoring.

Key wordsresidual noise    time-series reconstruction    TIMESAT    SPIRITS    machine learning    DATimeS
收稿日期: 2020-12-01      出版日期: 2021-12-23
ZTFLH:  TP75  
基金资助:国家自然科学基金项目“面向西北内陆河流域的InVEST模型优化及时空权衡研究”(41701634);南通大学人才引进项目“南通大学虚拟校园建设研究”(17R27);南通市重点实验室项目“空间信息技术研发与应用”(CP12016005)
通讯作者: 车明亮
作者简介: 钞振华(1977-),男,副教授,主要从事定量遥感研究。Email: chaozhenhua@ntu.edu.cn
引用本文:   
钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
CHAO Zhenhua, CHE Mingliang, HOU Shengfang. Brief review of vegetation phenological information extraction software based on time series remote sensing data. Remote Sensing for Natural Resources, 2021, 33(4): 19-25.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020382      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/19
分类 界定 常用方法 处理
窗口
经验平滑方法 基于经验知识或假设,该类方法是在时间序列的一个局部时间窗口内进行操作 最大值合成、局部加权回归、最佳指数斜率提取、时间窗口操作、均值迭代滤波、迭代插值、变权滤波、非线性自动化符合平滑器 局部
曲线拟合方法 该类方法采用数学函数将植被指数时间序列曲线拟合到指定函数,使用了数学函数逼近植被生长的时间序列轨迹且不需预先确定的阈值或经验约束 非对称高斯、Logistic函数拟合、Whitaker、二次函数拟合、局部调整三次样条、高阶年样条、参数双精度、双曲正切模型、S-G(Savitzky-Golay)滤波器、时空S-G、基于形状先验的方法 局部
数据变换方法 该类方法通过数学运算将时间序列分解为周期性、趋势性和不规则(如噪声)成分,如傅里叶变换和小波分析 快速傅里叶变换、经验模态分解、时间序列谐波分析、离散傅里叶变换、非经典高阶傅里叶变换、小波滤波器 全局
Tab.1  常用数据平滑重建方法
软件 开发语言 免费使用 软件网址 文献及见刊年 引用数
TIMESAT MATLAB,FORTRAN http://web.nateko.lu.se/timesat/timesat.asp [14],2004年 40
BFAST R http://r-forge.r-project.org/projects/bfast/ [15],2010年 12
TimeStats IDL https: //dl.acm.org/profile/81430677185 [16],2011年 0
SPIRITS 1.5.2 C,JAVA https: //mars.jrc.ec.europa.eu/asap/download.php [17],2014年 1
BeeBox JavaScript,HTML5,JAVA,
Perl,IDL,R
http://www.tern.org.au/ [18],2016年 1
Phenor R R https: //github.com/khufkens/phenor_manuscript [3],2018年 1
pyPhenology Python https: //github.com/openjournals/joss-reviews/issues/827 [19],2018年 0
CropPhenology R https: //github.com/SofanitAraya/CropPhenology [20],2018年 2
BEAST C/FORTRAN https: //github.com/zhaokg/Rbeast [30],2019年 1
FORCE 2.1 C/C++ http://force.feut.de [4],2019年 1
Earth Engine App JavaScript/Python https: //code.earthengine.google.com/ [21],2019年 1
EO Time Series Viewer Python https: //bitbucket.org/jakimowb/eo-time-series-viewer [22],2020年 2
DATimeS MATLAB http://artmotoolbox.com [23],2020年 1
Tab.2  已研发的基于时间序列遥感数据植被物候信息提取软件
Fig.1  TIMESAT软件发展简史
Fig.2  TIMESAT3.3主界面功能
Fig.3  SPIRITS软件主要功能架构
Fig.4  DATimeS软件的分层设计
[1] 梁顺林, 程洁, 贾坤, 等. 陆表定量遥感反演方法的发展新动态[J]. 遥感学报, 2016,20(5):875-898.
Liang S L, Cheng J, Jia K, et al. Recent progress in land surface quantitative remote sensing[J]. Journal of Remote Sensing, 2016,20(5):875-898.
[2] 赵忠明, 孟瑜, 岳安志, 等. 遥感时间序列影像变化检测研究进展[J]. 遥感学报, 2016,20(5):1110-1125.
Zhao Z M, Meng Y, Yue A Z, et al. Review of remotely sensed time series data for change detection[J]. Journal of Remote Sensing, 2016,20(5):1110-1125.
[3] Hufkens K, Basler D, Milliman T, et al. An integrated phenology modelling framework in R[J]. Methods in Ecology and Evolution, 2018,9:1276-1285.
doi: 10.1111/mee3.2018.9.issue-5
[4] Frantz D. Force-Landsat+Sentinel-2 analysis ready data and beyond[J]. Remote Sensing, 2019,11:1124.
doi: 10.3390/rs11091124
[5] Chao Z, Liu N, Zhang P, et al. Estimation methods developing with remote sensing information for energy crop biomass:A comparative review[J]. Biomass and Bioenergy, 2019,122:414-425.
doi: 10.1016/j.biombioe.2019.02.002
[6] 万昌君, 吴小丹, 林兴稳. 遥感数据时空尺度对地理要素时空变化分析的影响[J]. 遥感学报, 2019,23(6):1064-1077.
Wan C J, Wu X D, Lin X W. Impact of spatial and temporal scales of remote sensing data on the spatiotemporal change in geographic elements[J]. Journal of Remote Sensing, 2019,23(6):1064-1077.
[7] Dong Y, Peng C. Principled missing data methods for researchers[J]. SpringerPlus, 2013,2(1):1-17.
doi: 10.1186/2193-1801-2-1
[8] Moreno-Martínez Á, Izquierdo-Verdiguier E, Maneta M P, et al. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud[J]. Remote Sensing of Environment, 2020,247:111901.
doi: 10.1016/j.rse.2020.111901 pmid: 32943798
[9] Chao Z, Wang L, Che M, et al. Effects of different urbanization levels on land surface temperature change:Taking Tokyo and Shanghai for example[J]. Remote Sensing, 2020,12:2022.
doi: 10.3390/rs12122022
[10] Zeng L, Wardlow B, Xiang D, et al. A review of vegetation phenological metrics extraction using time-series,multispectral satellite data[J]. Remote Sensing of Environment, 2020,237:111511.
doi: 10.1016/j.rse.2019.111511
[11] Smith W, Dannenberg M, Yan D, et al. Remote sensing of dryland ecosystem structure and function:Progress,challenges,and opportunities[J]. Remote Sensing of Environment, 2019,233:111401.
doi: 10.1016/j.rse.2019.111401
[12] Chen J, Boccelli D. Real-time forecasting and visualization toolkit for multi-seasonal time series[J]. Environmental Modelling and Software, 2018,105:244-256.
doi: 10.1016/j.envsoft.2018.03.034
[13] Jönsson P, Cai Z, Melaas E, et al. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data[J]. Remote Sensing, 2018,10(4):635.
doi: 10.3390/rs10040635
[14] Jönsson P, Eklundh L. TIMESAT:A program for analyzing time-series of satellite sensor data[J]. Computers and Geosciences, 2004,30:833-845.
doi: 10.1016/j.cageo.2004.05.006
[15] Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010,114:106-115.
doi: 10.1016/j.rse.2009.08.014
[16] Udelhoven T. Timestats:A software tool for the retrieval of temporal patterns from global satellite archives[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011,4:310-317.
doi: 10.1109/JSTARS.4609443
[17] Eerens H, Haesen D, Rembold F, et al. Image time series processing for agriculture monitoring[J]. Environmental Modelling and Software, 2014,53:154-162.
doi: 10.1016/j.envsoft.2013.10.021
[18] Arundel J, Winter S, Gui G, et al. A web-based application for beekeepers to visualise patterns of growth in floral resources using MODIS data[J]. Environmental Modelling and Software, 2016,83:116-125.
doi: 10.1016/j.envsoft.2016.05.010
[19] Taylor S. pyPhenology:A python framework for plant phenology modelling[J]. Journal of Open Source Software, 2018,3(28):827.
doi: 10.21105/joss
[20] Araya S, Ostendorf B, Lyle G, et al. CropPhenology:An R package for extracting crop phenology from time series remotely sensed vegetation index imagery[J]. Ecological Informatics, 2018,46:45-56.
doi: 10.1016/j.ecoinf.2018.05.006
[21] Li H, Wan W, Fang Y, et al. A Google Earth Engine-enabled software for efficiently generating high-quality user-ready Landsat mosaic images[J]. Environmental Modelling and Software, 2019,112:16-22.
doi: 10.1016/j.envsoft.2018.11.004
[22] Jakimow B, van der Linden S, Thiel F, et al. Visualizing and labeling dense multi-sensor earth observation time series:The EO time series viewer[J]. Environmental Modelling and Software, 2020,125:104631.
doi: 10.1016/j.envsoft.2020.104631
[23] Belda S, Pipia L, Morcillo-Pallarés P, et al. DATimeS:A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection[J]. Environmental Modelling and Software, 2020,127:104666.
doi: 10.1016/j.envsoft.2020.104666
[24] Dragoni D, Schmid H, Wayson C, et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in southcentral Indiana,USA[J]. Global Change Biology, 2011,17(2):886-897.
doi: 10.1111/gcb.2010.17.issue-2
[25] White M, De Beurs K, Didan K, et al. Intercomparison,interpretation,and assessment of spring phenology in North America estimated from remote sensing for 1982 to 2006[J]. Global Change Biology, 2009,15:2335-2359.
doi: 10.1111/gcb.2009.15.issue-10
[26] Julien Y, Sobrino J. Global land surface phenology trends from GIMMS database[J]. International Journal of Remote Sensing, 2009,30:3495-3513.
doi: 10.1080/01431160802562255
[27] Tan B, Morisette J, Wolfe R, et al. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011,4:361-371.
doi: 10.1109/JSTARS.4609443
[28] Broich M, Huete A, Paget M, et al. A spatially explicit land surface phenology data product for science,monitoring and natural resources management applications[J]. Environmental Modelling and Software, 2015,64:191-204.
doi: 10.1016/j.envsoft.2014.11.017
[29] Berra E, Gaulton R, Barr S. Assessing spring phenology of a temperate woodland:A multiscale comparison of ground,unmanned aerial vehicle and Landsat satellite observations[J]. Remote Sensing of Environment, 2019,223:229-242.
doi: 10.1016/j.rse.2019.01.010
[30] Zhao K, Wulder M, Hu T, et al. Detecting change-point,trend,and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics:A Bayesian ensemble algorithm[J]. Remote Sensing of Environment, 2019,232:111181.
doi: 10.1016/j.rse.2019.04.034
[31] Belda S, Pipia L, Morcillo-Pallarés P, et al. Optimizing Gaussian process regression for image time series gap-filling and crop monitoring[J]. Agronomy, 2020,10:618.
doi: 10.3390/agronomy10050618
[32] Verrelst J, Malenovský Z, Van der Tol C, et al. Quantifying vegetation biophysical variables from imaging spectroscopy data:A review on retrieval method[J]. Surveys in Geophysics, 2019,40:589-629.
doi: 10.1007/s10712-018-9478-y
[33] Reichstein M, Campas-Valls G, Stevens B, et al. Deep learning and process understanding for data driven Earth system science[J]. Nature, 2019,566:195-204.
doi: 10.1038/s41586-019-0912-1
[34] 曹沛雨, 张雷明, 李胜功, 等. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016,31(4):365-376.
Cao P Y, Zhang L M, Li S G, et al. Review on vegetation phenology observation and phenological index extraction[J]. Advanced Earth Science, 2016,31(4):365-376.
[1] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[2] 李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
[3] 周询, 王跃宾, 刘素红, 于佩鑫, 王西凯. 一种遥感影像自动识别耕地类型的机器学习算法[J]. 国土资源遥感, 2018, 30(4): 68-73.
[4] 俞乐, 曹凯, 吴飏, 张登荣. 基于影像交叉学习的CBERS CCD波段模拟[J]. 国土资源遥感, 2011, 23(3): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发