Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 57-65    DOI: 10.6046/zrzyyg.2022041
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
融合多种机器学习模型的2 m气温空间降尺度方法
李显风(), 袁正国(), 邓卫华, 杨立苑, 周雪莹, 胡丽丽
江西省气象信息中心,南昌 330096
Spatial downscaling methods for the 2-meter air temperature grid data based on multiple machine learning models
LI Xianfeng(), YUAN Zhengguo(), DENG Weihua, YANG Liyuan, ZHOU Xueying, HU Lili
Jiangxi Meteorological Information Center, Nanchang 330096, China
全文: PDF(5753 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高分辨率气象资料是精细化气象业务服务的重要数据基础,文章利用2020年1月—2021年3月逐小时的2 m气温网格数据,选取海拔、经度、纬度等地形因子,综合应用LightGBM(LGB)、XGBoost(XGB)、梯度提升树(gradient boosting tree, GBT)和随机森林(random forest, RF)4种机器学习方法,实现1 km分辨率的2 m气温网格数据降尺度至100 m,并对4种机器学习降尺度结果进行加权融合。将不同模型降尺度结果与双线性插值结果对比,结果表明: 各降尺度模型结果与站点观测值较为一致,LGB,XGB和RF模型与双线性插值降尺度结果空间结构相似,但更为精细; 各降尺度模型具有相同的时空误差分布特征,与双线性插值结果相比,LGB,XGB和GBT的数据精度均有明显提高,均方根误差(root mean square error,RMSE)分别降低了5.2%,4.1%和4.6%,而加权融合后的RMSE降低了5.9%,优于单一机器学习模型; LGB,XGB和GBT模型对不同地形条件下的降尺度结果均具有一定改善,尤其对高海拔地区(海拔在600 m以上)的改进效果更为显著,LGB,XGB和BGT和融合模型的相关系数分别提高了0.45%,0.40%,0.63%和0.66%,RMSE分别降低了9.1%,8.0%,12.7%和13.1%。研究显示,多种机器学习加权融合的降尺度模型兼顾了提升空间分辨率和保持数据精度两方面的要求,适用于研究区2 m气温数据的降尺度研究,为研制高分辨率数据产品具有一定参考意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李显风
袁正国
邓卫华
杨立苑
周雪莹
胡丽丽
关键词 实况网格产品2 m气温降尺度机器学习加权融合    
Abstract

High-resolution meteorological data serve as an important data basis for fine-scale meteorological services. Using the hourly 2-meter air temperature grid data from January 2020 to March 2021 and the terrain factors such as altitude, longitude, and latitude, this study aimed to enhance the resolution of 2-meter air temperature grid data with a resolution of 1 km to 100 m through downscaling based on four machine learning methods, namely LightGBM (LGB), XGBoost (XGB), gradient boosting tree (GBT), and random forest (RF). Then, this study conducted the weighted fusion of downscaling results of different models. Finally, the downscaling results of different models were compared with the bilinear interpolation results, and the results are as follows. The results of each downscaling model were relatively consistent with the observational data. Compared with the bilinear interpolation results, the results of the LGB, XGB, and RF models had similar spatial structures but were more detailed. All downscaling models yielded the same spatio-temporal distribution characteristics of errors. Compared with the bilinear interpolation results, the data of the LGB, XGB, and GBT models showed significantly higher precision, and their root mean square errors (RMSEs) decreased by 5.2%, 4.1%, and 4.6%, respectively. Meanwhile, the RMSE after weighted fusion decreased by 5.9%, which was higher than that of any single machine learning model. The downscaling results of the LGB, XGB, and GBT models were improved to a certain degree compared with the bilinear interpolation results under different terrain conditions, especially in high-altitude areas (above 600 m). The correlation coefficients of results of the LGB, XGB, and BGT models and model based on weighted fusion increased by 0.45%, 0.40%, 0.63%, and 0.66%, respectively, and their RMSEs decreased by 9.1%, 8.0%, 12.7%, and 13.1%, respectively. These results indicate that the downscaling model based on the weighted fusion of different machine learning methods can both improve spatial resolution and maintain data precision and, thus, is suitable for downscaling research on 2-meter air temperature data in the study area. This study can be used as a reference for developing high-resolution data products.

Key wordsreal-time grid product    2-meter air temperature    downscaling    machine learning    weighted fusion
收稿日期: 2022-02-11      出版日期: 2023-03-20
ZTFLH:  TP79  
基金资助:江西省重点研发计划项目“江西省高时空分辨率多源降水融合技术研究与网格化产品研制”(S2020ZPYFB0099);江西省03专项及5G项目“江西省大数据智慧气象服务示范应用平台”(20212ABC03W02)
通讯作者: 袁正国(1973-),男,本科,教授级高级工程师,主要从事气象信息系统和数据服务研究。Email: 422577658@qq.com
作者简介: 李显风(1984-),男,硕士,高级工程师,主要从事气象资料分析处理与产品研发。Email: lixianfeng223@163.com
引用本文:   
李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
LI Xianfeng, YUAN Zhengguo, DENG Weihua, YANG Liyuan, ZHOU Xueying, HU Lili. Spatial downscaling methods for the 2-meter air temperature grid data based on multiple machine learning models. Remote Sensing for Natural Resources, 2023, 35(1): 57-65.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022041      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/57
Fig.1  研究区示意图
Fig.2  2 m气温降尺度流程图
Fig.3  2021年3月1日16时2 m气温空间分布
Fig.4  不同模型的RMSE空间分布图
Fig.5  2021年1月1日—3月31日各模型统计指标逐小时变化趋势
Fig.6  各模型统计指标在不同海拔的对比
Fig.7  各模型统计指标偏差在不同海拔高度的对比
[1] 李显风, 张玮, 李芬, 等. 基于WebGIS的实况网格产品应用分析平台及关键技术[J]. 气象科技, 2020, 48(2):185-194.
Li X F, Zhang W, Li F, et al. An WebGIS-based real-time application/analysis platform of grid products and key technology[J]. Meteorological Science and Technology, 2020, 48(2):185-194.
[2] 张玮, 李显风, 何瑶, 等. 基于江西省站点资料对智能网格实况分析产品的检验评估[J]. 江西师范大学学报(自然科学版), 2020, 44(4):403-410.
Zhang W, Li X F, He Y, et al. The quality assessment of the intelligent grid real-time analysis products using the station data in Jiangxi Province[J]. Journal of Jiangxi Normal University (Nature Science), 2020, 44(4):403-410.
[3] 韩帅, 师春香, 姜志伟, 等. CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展[J]. 气象科技进展, 2018, 8(1):102-108.
Han S, Shi C X, Jiang Z W, et al. Development and progress of high resolution CMA land surface data assimilation system[J]. Advances in Meteorological Science and Technology, 2018, 8(1):102-108.
[4] 潘旸, 谷军霞, 徐宾, 等. 多源降水数据融合研究及应用进展[J]. 气象科技进展, 2018, 8(1):143-152.
Pan Y, Gu J X, Xu B, et al. Advances in multi-source precipitation merging research[J]. Advances in Meteorological Science and Technology, 2018, 8(1):143-152.
[5] 师春香, 潘旸, 谷军霞, 等. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77(4):774-783.
Shi C X, Pan Y, Gu J X, et al. A review of multi-source meteorological data fusion products[J]. Acta Meteorologica Sinica, 2019, 77(4):774-783.
[6] 李显风, 张玮, 黄少平, 等. 江西省气象-水文-雷达小时雨量信息融合试验结果分析[J]. 暴雨灾害, 2020, 39(3):276-284.
Li X F, Zhang W, Huang S P, et al. Analysis of fusion test results on hourly precipitation from meteorological and hydrological stations and Radar[J]. Torrential Rain and Disasters, 2020, 39(3):276-284.
[7] Kustas W P, Norman J M, Anderson M C, et al. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship[J]. Remote Sensing of Environment, 2003, 85(4):429-440.
doi: 10.1016/S0034-4257(03)00036-1
[8 ] Agam N, Kustas W P, Anderson M C, et al. A vegetation index based technique for spatial sharpening of thermal imagery[J]. Remote Sensing of Environment, 2007, 107(4):545-558.
doi: 10.1016/j.rse.2006.10.006
[9] 张晓. 天山中段卫星降水数据的降尺度研究及时空特征分析[D]. 兰州: 西北师范大学, 2013.
Zhang X. Study on the downscaling algorithm of remote sensing precipitation and analysis of temporal-spatial characteristic in the middle section of Mount Tianshan[D]. Lanzhou: Northwest Normal University, 2013.
[10] Duan S B, Li Z L. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression:Case study in northern China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6458-6469.
doi: 10.1109/TGRS.2016.2585198
[11] Yang G J, Pu R L, Huang W J, et al. A novel method to estimate subpixel temperature by fusing solar-reflec-tive and thermal-infrared remote-sensing data with an artificial neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2170-2178.
doi: 10.1109/TGRS.2009.2033180
[12] Hutengs C, Vohland M. Downscaling land surface temperatures at regional scales with random forest regression[J]. Remote Sensing of Environment, 2016, 178:127-141.
doi: 10.1016/j.rse.2016.03.006
[13] 颜佳楠, 陈虹, 姚光林, 等. 基于XGBoost的LST空间降尺度方法[J]. 无线电工程, 2021, 51(12):1508-1516.
Yan J N, Chen H, Yao G L, et al. A spatial downscaling method of land surface temperature based on XGBoost algorithm[J]. Radion Engineering, 2021, 51(12):1508-1516.
[14] 尹枷愿, 蔡宏, 田鹏举, 等. 喀斯特地区地表温度空间降尺度方法初探[J]. 地理与地理信息科学, 2021, 27(3):38-46.
Yin J Y, Cai H, Tian P J, et al. Spatial downscaling research of the land surface temperature in karst region[J]. Geography and Geo-Information Science, 2021, 27(3):38-46.
[15] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3):181-188.doi:10.6046/gtzyyg.2018.03.25.
doi: 10.6046/gtzyyg.2018.03.25
Xu B R, Wei Y Y. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm[J]. Remote Sensing for Land and Resources, 2018, 30(3):181-188.doi:10.6046/gtzyyg.2018.03.25.
doi: 10.6046/gtzyyg.2018.03.25
[16] 张朝忙, 刘庆生, 刘高焕, 等. STRM3与ASTER GDEM数据处理及应用进展[J]. 地理与地理信息科学, 2012, 28(5):29-34.
Zhang C M, Liu Q S, Liu G H, et al. Data processing and application progress of SRTM3 and ASTER GDEM[J]. Geography and Geo-Information Science, 2012, 28(5):29-34.
[17] 康俊锋, 黄烈星, 张春艳, 等. 多机器学习模型下逐小时PM2.5预测及对比分析[J]. 中国环境科学, 2020, 40(5):1895-1905.
Kang J F, Huang L X, Zhang C Y, et al. Hourly PM2.5 prediction and comparative analysis under multi-machine learning model[J]. China Environment Science, 2020, 40(5):1895-1905.
[18] 胡占占, 陈传法, 胡保健. 基于时空XGBoost的中国区域PM2.5浓度遥感反演[J]. 环境科学学报, 2021, 41(10):4228-4237.
Hu Z Z, Chen C F, Hu B J. Estimating PM2.5 concentrations across China based on space-time XGBoost approach[J]. Acta Scientiae Circumstan tiae, 2021, 41(10):4228-4237.
[19] 余东昌, 赵文芳, 聂凯, 等. 基于LightGBM算法的能见度预测模型[J]. 计算机应用, 2021, 41(4):1035-1041.
doi: 10.11772/j.issn.1001-9081.2020081589
Yu D C, Zhao W F, Nie K, et al. Visibility forecast model based on LightGBM algorithm[J]. Journal of Computer Application, 2021, 41(4):1035-1041.
[1] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[2] 杜懿, 王大洋, 王大刚. GPM卫星降水产品空间降尺度研究——以贵州省为例[J]. 自然资源遥感, 2021, 33(4): 111-120.
[3] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[4] 范田亿, 张翔, 黄兵, 钱湛, 姜恒. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4): 209-218.
[5] 朱瑜馨, 吴门新, 鲍艳松, 李鑫川, 张锦宗. FY-3D/MWRI L1B亮温LST反演与降尺度研究[J]. 自然资源遥感, 2021, 33(3): 27-35.
[6] 宋承运, 胡光成, 王艳丽, 汤超. 基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究[J]. 国土资源遥感, 2021, 33(2): 20-26.
[7] 熊俊楠, 李伟, 刘志奇, 程维明, 范春捆, 李进. 基于GWR模型的青藏高原地区TRMM数据降尺度研究[J]. 国土资源遥感, 2019, 31(4): 88-95.
[8] 周询, 王跃宾, 刘素红, 于佩鑫, 王西凯. 一种遥感影像自动识别耕地类型的机器学习算法[J]. 国土资源遥感, 2018, 30(4): 68-73.
[9] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188.
[10] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
[11] 荣媛, 杨永民. 地表辐射温度取代地表温度的可行性分析--以"风云2号"C星与MODIS数据为例[J]. 国土资源遥感, 2011, 23(4): 14-19.
[12] 俞乐, 曹凯, 吴飏, 张登荣. 基于影像交叉学习的CBERS CCD波段模拟[J]. 国土资源遥感, 2011, 23(3): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发