Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 302-309    DOI: 10.6046/zrzyyg.2023075
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析
唐晖1,2,3(), 邹娟1,2,3, 尹向红1, 余姝辰1,2,3, 贺秋华1,2,3, 赵动1, 邹聪1, 罗建强1,2,3
1.湖南省自然资源事务中心,长沙 410004
2.洞庭湖区生态环境遥感监测湖南省重点实验室, 长沙 410004
3.自然资源部洞庭湖流域生态保护修复工程技术创新中心,长沙 410004
River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis
TANG Hui1,2,3(), ZOU Juan1,2,3, YIN Xianghong1, YU Shuchen1,2,3, HE Qiuhua1,2,3, ZHAO Dong1, ZOU Cong1, LUO Jianqiang1,2,3
1. Hunan Center of Natural Resources Affairs, Changsha 410004, China
2. Hunan Provincial Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Changsha 410004, China
3. Dongting Lake Basin Ecological Protection and Restoration Engineering Technology Innovation Center, Ministry of Natural Resources, Changsha 410004, China
全文: PDF(5897 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为研究高分遥感技术在洞庭湖区河湖采砂监管中的应用,基于近20 a来航天航空高分遥感影像,采取人机交互解译与实地调查验证相结合的方法,总结河湖砂石开采的地表要素类型与涵义,建立河湖采砂遥感解译标志,剖析具有代表性的典型案例。研究表明: 河湖砂石开采遥感解译标志不同于前人总结的陆域矿山开采的解译标志,其采矿设备为采砂船,“挖洲”开采面致使水涯线呈锯齿状,运矿设备为运砂船,中转场地有堆沙场和砂石码头,采场附近出现水体浑浊、洲滩萎缩等地表覆盖变化。通过华龙堆砂场的变迁、城陵矶砂石码头治理和东洞庭湖飘尾洲非法采砂等3个典型案例分析,表明高分遥感技术可为河湖砂石监管提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐晖
邹娟
尹向红
余姝辰
贺秋华
赵动
邹聪
罗建强
关键词 高分遥感洞庭湖区河湖岸线采砂监管典型案例    
Abstract

This study aims to investigate the application of high-resolution remote sensing images in the supervision of river and lake sand mining in the Dongting Lake area. Based on the aerial and space high-resolution remote sensing images over the past 20 years, as well as human-computer interaction interpretation and field investigation verification, this study summarized the types and meanings of surface elements in river and lake sand mining, established the remote sensing interpretation symbols for river and lake sand mining, and analyzed representative typical cases. The results show that the interpretation symbols of remote sensing images for river and lake sand mining differ from those for onshore mining summarized previously. The river and lake sand mining was carried out using dredges as the mining equipment, sand carriers as the transport equipment, and sand yards and docks as transfer sites. The mining surfaces caused serrated bank lines during sandbar digging. Furthermore, surface cover changed near mining areas, including turbid water and shrinkage of sandbars and shoals. This study analyzed three typical cases, namely the evolution of the Hualong sand yard, the treatment of the Chenglingji wharf, and the illegal sand mining in Piaoweizhou of the eastern Dongting Lake. The analytical results indicate that high-resolution remote sensing can provide technical support for supervising river and lake sand mining.

Key wordshigh-resolution remote sensing images    Dongting Lake area    river and lake bank line    sand mining supervision    typical case
收稿日期: 2023-03-21      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:湖南省自然资源厅科技计划项目“地空全谱段光谱在洞庭湖水质参数反演中的关键技术研究”(2022-19);“‘洞庭湖区山水林田湖草沙一体化保护修复工程’监测评估关键技术研究”(湘自资科20230142ST)
作者简介: 唐 晖(1977-),男,研究生,高级工程师,研究方向为国土空间生态保护修复监测。Email: 1561109908@qq.com
引用本文:   
唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023075      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/302
地表要素类型 涵义
采砂设备 采砂船,有吸砂式、链斗式、吊抓式等类型,包括采掘、淘洗、传送砂石等附属设施。细砂常用吸砂式采砂船,粗砂选用链斗式或吊抓式采砂船
开采面 指清除砂石表部盖层后挖掘砂石形成的场地,采场分为水域开采和滩涂开采2种,采挖方法分为分层回采与掏槽采挖2类
运矿设备 船舶,用于将采场淘洗后的成品砂石运送到堆沙场或砂石码头
中转场地 即堆沙场,又称砂石码头堆场,是成品砂石临时停放的场所,常因砂石不断堆放或销售,形态容易变化
采场地物 包括采坑、洲滩形态、地表覆盖、水涯线、采场周边水体变化等
Tab.1  河湖砂石开采地表要素及其涵义
Fig.1  洞庭湖区河湖采砂影像标志(2014—2017年)
Fig.2  华龙砂场变迁典型时段遥感图像
Fig.3  飘尾洲非法采砂典型时段遥感图像及解译图
Fig.4  城陵矶砂货混用码头典型时段遥感图像
[1] 余姝辰, 余德清, 王伦澈, 等. 三峡水库运行前后洞庭湖洲滩面积变化遥感认识[J]. 地球科学, 2019, 44(12):4275-4283.
Yu S C, Yu D Q, Wang L C, et al. Remote sensing study of Dongting Lake beach changes before and after operation of Three Gorges Reservoir[J]. Earth Science, 2019, 44(12):4275-4283.
[2] 蒋婕妤, 钟艳红. 湖南省河道采砂管理的实践与思考[J]. 湖南水利水电, 2020(3):106-108.
Jiang J Y, Zhong Y H. Practice and reflection on sand mining management in river channels in Hunan Province[J]. Hunan Hydro and Power, 2020(3):106-108.
[3] 湖南省水利厅. 湖南重拳整治洞庭湖非法采砂[J]. 湖南水利水电, 2017(6):116.
Hunan Provincial Department of Water Resources. Hunan cracks down on illegal sand mining in Dongting Lake[J]. Hunan Hydro and Power, 2017(6):116.
[4] 邹娟, 刘助龙, 张永忠, 等. 洞庭湖生态经济区(湖南部分)矿山开发状况的遥感监测与分析[J]. 山西冶金, 2022, 45(5):71-74.
Zou J, Liu Z L, Zhang Y Z, et al. Remote sensing monitoring and analysis of mining development in Dongting Lake ecological economic zone (Hunan Part)[J]. Shanxi Metallurgy, 2022, 45(5):71-74.
[5] 殷亚秋, 蒋存浩, 鞠星, 等. 海南岛2018年矿山地质环境遥感评价和生态修复对策[J]. 自然资源遥感, 2022, 34(2):194-202.doi: 10.6046/zrzyyg.2021136.
doi: 10.6046/zrzyyg.2021136
Yin Y Q, Jiang C H, Ju X, et al. Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures[J]. Remote Sensing for Natural Resources, 2022, 34(2):194-202.doi: 10.6046/zrzyyg.2021136.
doi: 10.6046/zrzyyg.2021136
[6] 张仙, 李伟, 陈理, 等. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2):25-33.doi:10.6046/zrzyyg.2022141.
doi: 10.6046/zrzyyg.2022141
Zhang X, Li W, Chen L, et al. Research progress and prospect of remote sensing extraction of elements in opencast mining area[J]. Remote Sensing for Natural Resources, 2023, 35(2):25-33.doi:10.6046/zrzyyg.2022141.
doi: 10.6046/zrzyyg.2022141
[7] 杨显华, 魏鹏, 吕军, 等. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感, 2022, 34(2):162-167.doi: 10.6046/zrzyyg.2021195.
doi: 10.6046/zrzyyg.2021195
Yang X H, Wei P, Lyu J, et al. Application of mining collapse reco-gnition technology based on multi-source remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(2):162-167.doi: 10.6046/zrzyyg.2021195.
doi: 10.6046/zrzyyg.2021195
[8] 于航, 安娜, 汪洁, 等. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3):310-318.doi:10.6046/zrzyyg.2022170.
doi: 10.6046/zrzyyg.2022170
Yu H, An N, Wang J, et al. High resolution remote sensing dynamic monitoring of coal mining subsidence area in Southwest Guizhou: A case study of coal mine goaf subsidence area in Liupanshui[J]. Remote Sensing for Natural Resource, 2023, 35(3):310-318.doi:10.6046/zrzyyg.2022170.
doi: 10.6046/zrzyyg.2022170
[9] 杨金中, 秦绪文, 聂洪峰, 等. 全国重点矿区矿山遥感监测综合研究[J]. 中国地质调查, 2015(4):24-30.
Yang J Z, Qin X W, Nie H F, et al. Comprehensive research on remote sensing monitoring of the national concentration zones of the important mine[J]. Geological Survey of China, 2015(4):24-30.
[10] 秦绪文, 杨金中. 中国矿山遥感监测[M]. 北京: 测绘出版社, 2014.
Qin X W, Yang J Z. Remote sensing monitoring of mines in China[M]. Beijing: Surveying and Mapping Publishing House, 2014.
[11] 张端阳, 潘振祥. 遥感技术在矿业活动动态监测中的应用[J]. 测绘通报, 2015(6):72-74.
doi: 10.13474/j.cnki.11-2246.2015.0182
Zhang D Y, Pan Z X. Application of remote sensing technique to monitor mining activities[J]. Bulletin of Surveying and Mapping, 2015(6):72-74.
[12] 刘立, 李长安, 高俊华, 等. 多源卫星遥感的湖南矿山违法开采时空变化[J]. 遥感学报, 2022, 26(3):528-540.
Liu L, Li C A, Gao J H, et al. Spatiotemporal changes of illegal mining in Hunan mines based on multi-source satellite remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(3):528-540.
doi: 10.11834/jrs.20219284
[13] 崔倩, 陈德清. 遥感技术支撑河湖监管典型案例分析[J]. 水利信息化, 2020(2):9-13.
Cui Q, Chen D Q. Typical case analysis of river and lake supervision supported by remote sensing technology[J]. Water Resources Information, 2020(2):9-13.
[14] 索然. 河道采砂监管中无人机测绘技术的应用[J]. 黑龙江水利科技, 2021, 49(11):156-158,202.
Suo R. Application of UAV surveying and mapping technology in river sand mining supervision[J]. Heilongjiang Hydraulic Science and Technology, 2021, 49(11):156-158,202.
[15] 许小华, 包学才, 王海菁, 等. 河湖采砂全过程智能监管关键技术及应用[D]. 南昌: 江西省水利科学研究院, 2021.
Xu X H, Bao X C, Wang H J, et al. Key technologies and applications of intelligent supervision of the whole process of sand mining in rivers and lakes[D]. Nanchang: JiangXi Academy of Water Science and Engineering, 2021.
[16] 余姝辰, 王伦澈, 夏卫平, 等. 清末以来洞庭湖区通江湖泊的时空演变[J]. 地理学报, 2020, 75(11):2346-2361.
doi: 10.11821/dlxb202011006
Yu S C, Wang L C, Xia W P, et al. Spatio-temporal evolution of riparian lakes in Dongting Lake area since the late Qing Dynasty[J]. Acta Geographica Sinica, 2020, 75(11):2346-2361.
doi: 10.11821/dlxb202011006
[17] 余德清, 余姝辰, 贺秋华, 等. 联合历史地图与遥感技术的洞庭湖百年萎缩监测[J]. 国土资源遥感, 2016, 28(3):116-122.doi: 10.6046/gtzyyg.2016.03.19.
doi: 10.6046/gtzyyg.2016.03.19
Yu D Q, Yu S C, He Q H, et al. Monitoring of Dongting Lake atrophy in the past 100 years by combining historical map and remote sensing technology[J]. Remote Sensing for Land and Resources, 2016, 28(3): 116-122.doi: 10.6046/gtzyyg.2016.03.19.
doi: 10.6046/gtzyyg.2016.03.19
[18] 贺秋华, 余德清, 余姝辰, 等. 三峡水库运行前后洞庭湖水资源量变化[J]. 地球科学, 2021, 46(1):293-307.
He Q H, Yu D Q, Yu S C, et al. Changes of water resources amount in Dongting Lake before and after the operation of the Three Gorges Reservoir[J]. Earth Science, 2021, 46(1):293-307.
[19] 水利部长江水利委员会. 长江泥沙公报(2020)[M]. 武汉: 长江出版社, 2021.
Changjiang Water Resources Commission of the Ministry of Water Resource. Changjiang sediment bulletin(2020)[M]. Wuhan: Changjiang Press, 2021.
[20] 岳阳市水利局. 湖南省湘资沅澧干流及洞庭湖河道采砂规划(2023—2027年)[EB/OL].(2021-11-26) [2023-04-10]. http://slt.hunan.gov.cn/slt/xxgk/zfcg/202111/t20211126_21179095.html.
Yueyang Water Conservancy Bureau. Sand mining planning of main stream of Xiangzi Yuanli and Dongting Lake in Hunan Province (2023—2027)[EB/OL].(2021-11-26)[2023-04-10]. http://slt.hunan.gov.cn/slt/xxgk/zfcg/202111/t20211126_21179095.html.
[21] 郭芝桃, 章杨梓昕. 砂石码头的复绿蜕变——“天眼”技术助力洞庭湖旧貌换新颜[N/OL]. 湖南日报,2022-04-18(B02)[2023-04-10]. https://www.hunantoday.cn/article/202204/202204180915239040.html.
Guo Z T, Zhang Y Z X. The green transformation of the gravel wharf:“Sky Eye” technology helps Dongting Lake to change its old appearance[N/OL]. Hunan Daily,2022-04-18(B02) [2023-04-10]. https://www.hunantoday.cn/article/202204/202204180915239040.html.
[1] 阳煜瑾, 杨帆, 徐祯妮, 李祝. 洞庭湖区生态服务-经济发展时空协调分析与优化[J]. 自然资源遥感, 2023, 35(3): 190-200.
[2] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
[3] 付丽华, 张策. 基于高分遥感数据的西藏荣勒地区控矿信息提取[J]. 国土资源遥感, 2020, 32(1): 98-105.
[4] 陈玲, 贾佳, 王海庆. 高分遥感在自然资源调查中的应用综述[J]. 国土资源遥感, 2019, 31(1): 1-7.
[5] 苏腾飞, 张圣微, 李洪玉. 启发法优化的农田地区高分遥感影像分割[J]. 国土资源遥感, 2017, 29(4): 106-113.
[6] 苏腾飞, 张圣微, 李洪玉. 基于可变尺度Mean-Shift的农田高分遥感影像分割算法[J]. 国土资源遥感, 2017, 29(3): 41-50.
[7] 代晶晶, 王登红, 吴亚楠. 基于高分遥感数据的稀有矿山监测——以江西宜春414稀有矿山为例[J]. 国土资源遥感, 2017, 29(3): 104-110.
[8] 苏腾飞, 张圣微, 李洪玉. 基于纹理特征与区域生长的高分辨率遥感影像分割算法[J]. 国土资源遥感, 2017, 29(2): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发