Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 118-127    DOI: 10.6046/zrzyyg.2022383
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于机器学习算法的机载高光谱图像优势树种识别
于航1,2(), 谭炳香1,2(), 沈明潭1,2, 贺晨瑞1,2, 黄逸飞1,2
1.中国林业科学研究院资源信息研究所,北京 100091
2.国家林业和草原局林业遥感与信息技术重点实验室,北京 100091
Identifying predominant tree species based on airborne hyperspectral images using machine learning algorithms
YU Hang1,2(), TAN Bingxiang1,2(), SHEN Mingtan1,2, HE Chenrui1,2, HUANG Yifei1,2
1. Research Institute of Forest Resources Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
2. Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Beijing 100091, China
全文: PDF(12795 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

对森林树种类型进行识别可以为森林资源清查工作的开展提供科学的参考价值,如何利用空间分辨率较高的高光谱数据准确识别森林优势树种是当前亟待解决的问题之一。文章以内蒙古大兴安岭根河森林保护区为研究区,在2种空间分辨率(1 m和3 m)下,使用样本点(样地对应像元的光谱值)与样本面(样地对应3×3窗口像元光谱平均值)2种样本取值尺度,采用3种机器学习分类算法(神经网络(neural network,NN)、三维卷积神经网络(three dimensional convolution neural network,3DCNN)和支持向量机(support vector machines,SVM))对机载高光谱图像的森林优势树种识别能力进行了探讨。结果表明: ①无论使用何种空间分辨率与样本取值尺度,3DCNN的分类精度最高,其总体精度和Kappa系数最高(最高分别为95.42%和0.94); ②高空间分辨率更有利于优势树种识别,其比低空间分辨率(3 m)总体精度最多可提高30.97%,Kappa系数最多可提高54.24%; ③使用NN与SVM进行分类时,以样本面作为样本取值尺度进行树种识别的精度低于样本点。而在3 m空间分辨率情况下使用3DCNN进行分类时,以样本面作为样本取值尺度进行树种识别的精度高于样本点。总的来说,空间分辨率、样本取值尺度与分类算法均对优势树种识别精度有不同程度的影响。在机载高光谱图像识别森林优势树种过程中,优先选择高空间分辨率影像,利用小样本数据,采取深度学习算法将会提高优势树种识别精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于航
谭炳香
沈明潭
贺晨瑞
黄逸飞
关键词 高光谱数据优势树种识别空间分辨率多尺度样本    
Abstract

Identifying forest tree species can provide a valuable scientific reference for ascertaining forest resources. However, it is difficult to achieve accurate tree species classification even using hyperspectral data with high spatial resolution. Hence, there is an urgent need to meet this challenge. This study investigated the Genhe Forest Reserve in the Great Xing’an Range within Inner Mongolia. At spatial resolutions of 1 m and 3 m, two sample value scales were employed: sample points (i.e., the spectral values of pixels corresponding to sample plots) and sample planes (i.e., the average spectral values of pixels in a 3×3 window corresponding to sample plots). Then, this study explored the identification effects of predominant tree species using airborne hyperspectral images based on three machine learning algorithms: neural network (NN), three-dimensional convolution neural network (3DCNN), and support vector machine (SVM). Key findings include: ① Regardless of spatial resolution and sample value scales, the 3DCNN exhibited the highest classification accuracy, yielding the highest overall accuracy and Kappa coefficient of 95.42% and 0.94, respectively; ② Compared to a low spatial resolution (3 m), a high spatial resolution was more favorable to the identification of predominant tree species, with overall accuracy and Kappa coefficient increased by 30.97% and 54.24% at most, respectively; ③ In the case of NN/SVM-based classification, sample points outperformed sample planes in improving the accuracy of tree species identification. In contrast, sample planes outperformed sample points for 3DCNN-based classification at a spatial resolution of 3 m. Overall, spatial resolution, sample value scales, and classification algorithms manifested varying degrees of effects on the identification accuracy of predominant tree species. High-spatial-resolution images, small-sample data, and deep-learning algorithms can be combined to enhance the accuracy of predominant tree species identification using airborne hyperspectral images.

Key wordshyperspectral data    identification of predominant tree species    spatial resolution    multiscale sample
收稿日期: 2022-09-26      出版日期: 2024-03-13
ZTFLH:  TP79  
  S725.2  
基金资助:科技部科技基础资源调查专项子课题“森林草地知识体系构建及知识采编”(2019FY202501);科技部科技基础资源调查专项子课题“森林专题地图集设计与编制”(2019FY202504)
通讯作者: 谭炳香(1966-),女,博士,研究员,研究方向为遥感技术在林业中的应用。Email: tan@ifrit.ac.cn
作者简介: 于 航(1996-),女,硕士研究生,研究方向为高光谱遥感林业应用。Email: yhang0325@163.com
引用本文:   
于航, 谭炳香, 沈明潭, 贺晨瑞, 黄逸飞. 基于机器学习算法的机载高光谱图像优势树种识别[J]. 自然资源遥感, 2024, 36(1): 118-127.
YU Hang, TAN Bingxiang, SHEN Mingtan, HE Chenrui, HUANG Yifei. Identifying predominant tree species based on airborne hyperspectral images using machine learning algorithms. Remote Sensing for Natural Resources, 2024, 36(1): 118-127.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022383      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/118
Fig.1  研究区地理位置示意图
Fig.2  高光谱图像信噪比与典型地物光谱曲线
Ⅰ级类型 Ⅱ级类型 Ⅲ级类型 Ⅳ级类型 Ⅴ级类型
林地 有林地 乔木林 纯林 白桦林
落叶松林
混交林 针阔混交林
灌木林地
草地
湿地
非植被 建设用地
水体
Tab.1  研究区分类体系
地类编号 地物类型 样本数(像元)/个
1 白桦林 3 946
2 落叶松林 2 444
3 针阔混交林 2 292
4 灌木林地 3 721
5 草地 1 318
6 湿地 3 924
7 非植被 5 450
Tab.2  各类别样本数量
Fig.3  3DCNN网络结构图
Fig.4  方案1的3种分类结果
Fig.5  方案2的3种分类结果
Fig.6  方案3的3种分类结果
Fig.7  方案4的3种分类结果
Fig.8  所有方案的总体精度与Kappa系数
分类模型 空间分
辨率/m
采样方式 白桦林 落叶松林 针阔混交林 灌木林
生产者
精度
使用者
精度
生产者
精度
使用者
精度
生产者
精度
使用者
精度
生产者
精度
使用者
精度
NN 1 样本点 0.98 1 0.96 0.99 0.98 0.91 0.95 0.93
样本面 0.69 0.58 0.81 0.91 0.64 0.37 0.74 0.91
3 样本点 0.64 0.70 0.81 0.93 0.58 0.23 0.82 0.81
样本面 0.69 0.50 0.78 0.93 0.45 0.07 0.67 0.87
3D
CNN
1 样本点 0.98 0.99 0.96 0.91 0.95 0.95 0.97 0.87
样本面 0.94 0.86 0.97 0.91 0.62 0.95 0.91 0.94
3 样本点 0.91 0.82 0.93 0.96 0.65 0.71 0.86 0.95
样本面 0.91 0.92 0.96 0.97 0.81 0.71 0.89 0.92
SVM 1 样本点 0.97 1 0.86 1 0.98 0.73 0.97 0.87
样本面 0.69 0.42 0.71 0.96 0 0 0.71 0.87
3 样本点 0.72 0.48 0.71 0.97 0 0 0.69 0.84
样本面 0.64 0.33 0.70 0.95 0 0 0.59 0.85
Tab.3  优势树种的生产者与使用者精度
[1] 宋庆丰. 中国近40年森林资源变迁动态对生态功能的影响研究[D]. 北京: 中国林业科学研究院, 2015.
Song Q F. Study on impact of forest resource dynamic change on forest ecological function in recent 40 years in China[D]. Beijing: Chinese Academy of Forestry, 2015.
[2] Nagendra H, Lucas R, Honrado J P, et al. Remote sensing for conservation monitoring:Assessing protected areas,habitat extent,habitat condition,species diversity,and threats[J]. Ecological Indicators, 2013, 33:45-59.
doi: 10.1016/j.ecolind.2012.09.014
[3] Thomas S C, Malczewski G. Wood carbon content of tree species in Eastern China:Interspecific variability and the importance of the volatile fraction[J]. Journal of Environmental Management, 2007, 85(3):659-662.
pmid: 17187921
[4] Ashutosh S. Monitoring forests:A new paradigm of remote sensing & GIS based change detection[J]. Journal of Geographic Information System, 2012, 4(5):470-478.
doi: 10.4236/jgis.2012.45051
[5] Connette G, Oswald P, Songer M, et al. Mapping distinct forest types improves overall forest identification based on multi-spectral Landsat imagery for Myanmar’s Tanintharyi Region[J]. Remote Sensing, 2016, 8(11):882.
doi: 10.3390/rs8110882
[6] 廖金雷, 张磊, 周湘山, 等. 融合植被指数的3D-2D-CNN高光谱图像植被分类方法[J]. 科学技术与工程, 2021, 21(27):11656-11662.
Liao J L, Zhang L, Zhou X S, et al. A hyperspectral image vegetation classification method using 2D-3D CNNs and vegetation index[J]. Science Technology and Engineering, 2021, 21(27):11656-11662.
[7] Wang Z S, Zou C, Cai W W. Small sample classification of hyperspectral remote sensing images based on sequential joint deeping learning model[J]. IEEE Access, 2020, 8:71353-71363.
doi: 10.1109/Access.6287639
[8] 谭炳香, 李增元, 陈尔学, 等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究, 2008, 21(s1):105-111.
Tan B X, Li Z Y, Chen E X, et al. Research advance in forest information extraction from hyoerspectral remote sensing data[J]. Forest Research, 2008, 21(s1):105-111.
[9] 王怀警, 谭炳香, 房秀凤, 等. C5.0决策树Hyperion影像森林类型精细分类方法[J]. 浙江农林大学学报, 2018, 35(4):724-734.
Wang H J, Tan B X, Fang X F, et al. Precise classification of forest types use Hyperion image based on the C5.0 decision tree algorithm[J]. Journal of Zhejiang A & F University, 2018, 35(4):724-734.
[10] Miyoshi G T, Arruda M S, Osco L P, et al. A novel deep learning method to identify single tree species in UAV-based hyperspectral images[J]. Remote Sensing, 2020, 12(8):1294.
doi: 10.3390/rs12081294
[11] 何兴元, 任春颖, 陈琳, 等. 森林生态系统遥感监测技术研究进展[J]地理科学, 2018, 38(7):997-1011.
doi: 10.13249/j.cnki.sgs.2018.07.001
He X Y, Ren C Y, Chen L, et al. The progress of forest ecosystems monitoring with remote sensing techniques[J]. Scientia Geographica Sinica, 2018, 38(7):997-1011.
doi: 10.13249/j.cnki.sgs.2018.07.001
[12] Dalponte M, Ørka H O, Gobakken T, et al. Tree species classification in boreal forests with hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2632-2645.
doi: 10.1109/TGRS.2012.2216272
[13] Suess S, Van der Linden S, Okujeni A, et al. Using class probabilities to map gradual transitions in shrub vegetation from simulated EnMAP data[J]. Remote Sensing, 2015, 7(8):10668-10688.
doi: 10.3390/rs70810668
[14] Ghosh A, Fassnacht F E, Joshi P K, et al. A framework for mapping tree species combining hyperspectral and LiDAR data:Role of selected classifiers and sensor across three spatial scales[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26:49-63.
doi: 10.1016/j.jag.2013.05.017
[15] Ali I, Greifeneder F, Stamenkovic J, et al. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data[J]. Remote Sensing, 2015, 7(12):16398-16421.
doi: 10.3390/rs71215841
[16] Petropoulos G P, Kontoes C C, Keramitsoglou I. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18:344-355.
doi: 10.1016/j.jag.2012.02.004
[17] 张晓男, 钟兴, 朱瑞飞, 等. 基于集成卷积神经网络的遥感影像场景分类[J]. 光学学报, 2018, 38(11):350-360.
Zhang X N, Zhong X, Zhu R F, et al. Scene classification of remote sensing images based onintegrated convolutional neural networks[J]. Acta Optica Sinica, 2018, 38(11):350-360.
[18] Sothe C, La Rosa L E C, De Almeida C M, et al. Evaluating a convolutional neural network for feature extraction and tree species classification using uav-hyperspectral images[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020:193-199.
[19] Mäyrä J, Keski-Saari S, Kivinen S, et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks[J]. Remote Sensing of Environment, 2021, 256:112322.
doi: 10.1016/j.rse.2021.112322
[20] Becker B L, Lusch D P, Qi J. A classification-based assessment of the optimal spectral and spatial resolutions for Great Lakes coastal wetland imagery[J]. Remote Sensing of Environment, 2007, 108(1):111-120.
doi: 10.1016/j.rse.2006.11.005
[21] 李波. 机载激光点云和高光谱影像融合的城市地物分类研究[D]. 武汉: 武汉大学, 2017.
Li B. Data fusion of aerial LIDAR data and hyperspectral imagery for urban classification[D]. Wuhan: Wuhan University, 2017.
[22] 徐化成. 中国大兴安岭森林[M]. 北京: 科学出版社,1998.
Xu H C. Daxinganling Mountains forests in China[M]. Beijing: Science Press,1998.
[23] 王正文, 王德利. 大兴安岭森林草原过渡带白桦及主要草本植物生态位关系的研究[J]. 应用生态学报, 2001, 12(5):677-681.
Wang Z W, Wang D L. Niche relationships between Betula platyphylla and main understory herbages in forest-steppe ecotone of Daxinganling Mountains[J]. Chinese Journal of Applied Ecology, 2001, 12(5):677-681.
[24] 陈立新, 肖洋. 大兴安岭林区落叶松林地不同发育阶段土壤肥力演变与评价[J]. 中国水土保持科学, 2006, 4(5):50-55.
Chen L X, Xiao Y. Evolution and evaluation of soil fertility in forest land in Larix gmelinii plantations at different development stages in Daxinganling forest region[J]. Science of Soil and Water Conservation, 2006, 4(5):50-55.
[25] 朱博, 王新鸿, 唐伶俐, 等. 光学遥感图像信噪比评估方法研究进展[J]. 遥感技术与应用, 2010, 25(2):303-309.
Zhu B, Wang X H, Tang L L, et al. Review on methods for SNR Estimation of optical remote sensing imagery[J]. Remote Sensing Technology and Application, 2010, 25(2):303-309.
[26] 国家林业局. LY/T 2188.1-2013森林资源数据采集技术规范[S]. 北京: 中国标准出版社, 2014.
State Forestry Administration. LY/T 2188.1-2013 Technical specification for forest resource data collection[S]. Beijing: China Standards Publishing House, 2014.
[27] Audebert N, Le Saux B, Lefèvre S. Deep learning for classification of hyperspectral data:A comparative review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):159-173.
doi: 10.1109/MGRS.2019.2912563
[28] Paoletti M E, Haut J M, Plaza J, et al. Deep learning classifiers for hyperspectral imaging:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:279-317.
doi: 10.1016/j.isprsjprs.2019.09.006
[29] Hasan M, Ullah S, Khan M J, et al. Comparative analysis of SVM,ANN and CNN for classifying vegetation species using hyperspectral thermal infrared data[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2019, 42:1861-1868.
[30] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1):32-42.
Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):32-42.
[31] Nguyen H M, Demir B, Dalponte M. A weighted SVM-based approach to tree species classification at individual tree crown level using LiDAR data[J]. Remote Sensing, 2019, 11(24):2948.
doi: 10.3390/rs11242948
[32] 郑迪, 沈国春, 王舶鉴, 等. 基于无人机高光谱影像和深度学习算法的长白山针阔混交林优势树种分类[J]. 生态学杂志, 2022, 41(5):1024-1032.
Zheng D, Shen G C, Wang B J, et al. Classification of dominant species in coniferous and broad-leaved mixed forest on Changbai Mountain based on UAV-based hyperspectral image and deep learning algorithm[J]. Chinese Journal of Ecology, 2022, 41(5):1024-1032.
doi: DOI: 10.13292/j.1000-4890.202203.004
[33] Trier Ø D, Salberg A B, Kermit M, et al. Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data[J]. European Journal of Remote Sensing, 2018, 51(1):336-351.
doi: 10.1080/22797254.2018.1434424
[34] Nevalainen O, Honkavaara E, Tuominen S, et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging[J]. Remote Sensing, 2017, 9(3):185.
doi: 10.3390/rs9030185
[35] 周子涵, 倪欢, 马林飞. 面向高光谱遥感图像分类的连续空间依赖增强型空—谱卷积神经网络[J]. 地理与地理信息科学, 2021, 37(6):32-40.
Zhou Z H, Ni H, Ma L F. Improved spectral-spatial convolutional network using continuously spatial dependency enhancement for hyperspectral image classification[J]. Geography and Geo-Information Science, 2021, 37(6):32-40.
[36] 邓琳, 邓明镜, 张力树. 高分辨率遥感影像阴影检测与补偿方法优化[J]. 遥感技术与应用, 2015, 30(2):277-284.
Deng L, Deng M J, Zhang L S. Optimization of shadow detection and compensation method for high-resolution remote sensing images[J]. Remote Sensing Technology and Application, 2015, 30(2):277-284.
[37] 蒋嘉锐, 朱文泉, 乔琨, 等. 基于Sentinel-2数据的天山山地针叶林识别方法研究[J]. 遥感技术与应用, 2021, 36(4):847-856.
Jiang J R, Zhu W Q, Qiao K, et al. An identification method for mountains coniferous in Tianshan with Sentinel-2 data[J]. Remote Sensing Technology and Application, 2021, 36(4):847-856.
[38] Sothe C, De Almeida C M, Schimalski M B, et al. Comparative performance of convolutional neural network,weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data[J]. GIScience & Remote Sensing, 2020, 57(3):369-394.
[39] 李海涛, 戴莉莉, 顾海燕, 等. 样本尺寸对遥感影像FCN训练模型的影响分析[J]. 测绘科学, 2019, 44(6):133-137.
Li H T, Dai L L, Gu H Y, et al. Analysis of sample size influence on FCN training model in remote sensing image[J]. Science of Surveying and Mapping, 2019, 44(6):133-137.
[40] Fricker G A, Ventura J D, Wolf J A, et al. A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery[J]. Remote Sensing, 2019, 11(19):2326.
doi: 10.3390/rs11192326
[41] Hartling S, Sagan V, Sidike P, et al. Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning[J]. Sensors, 2019, 19(6):1284.
doi: 10.3390/s19061284
[1] 胡晨霞, 邹滨, 梁玉, 贺晨骋, 林治家. 高空间分辨率生态系统生产总值时空演化分析——以2000—2020年湖南省为例[J]. 自然资源遥感, 2023, 35(3): 179-189.
[2] 吴浩波, 吴梦彤, 杨斯棋, 范闻捷, 任华忠. 基于叶片空间分布的植被遥感适宜尺度方法[J]. 自然资源遥感, 2022, 34(2): 72-79.
[3] 张春森, 吴蓉蓉, 李国君, 崔卫红, 冯晨轶. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19-25.
[4] 汪洁, 殷亚秋, 于航, 蒋存浩, 万语. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1): 232-236.
[5] 刘玉锋, 潘英, 李虎. 基于高空间分辨率遥感数据的天山云杉树冠信息提取研究[J]. 国土资源遥感, 2019, 31(4): 112-119.
[6] 郑艺, 林懿琼, 周建, 甘伟修, 林广旋, 许方宏, 林光辉. 基于资源三号的雷州半岛红树林种间分类研究[J]. 国土资源遥感, 2019, 31(3): 201-208.
[7] 姚丙秀, 黄亮, 许艳松. 一种结合超像素和图论的高空间分辨率遥感影像分割方法[J]. 国土资源遥感, 2019, 31(3): 72-79.
[8] 卫宝泉, 索安宁, 李颖, 赵建华. LBV变换在国产ZY-3卫星影像中应用研究探讨[J]. 国土资源遥感, 2019, 31(3): 87-94.
[9] 黄惠, 郑雄伟, 孙根云, 郝艳玲, 张爱竹, 容俊, 马红章. 基于引力自组织神经网络的震害遥感影像分类[J]. 国土资源遥感, 2019, 31(3): 95-103.
[10] 樊宪磊, 阎宏波, 瞿瑛. 基于HJ-1A/B CCD地表反照率估算方法比较与验证[J]. 国土资源遥感, 2019, 31(3): 123-131.
[11] 周阳, 张云生, 陈斯飏, 邹峥嵘, 朱耀晨, 赵芮雪. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感, 2019, 31(2): 44-50.
[12] 邢学文, 刘松, 许德刚, 钱凯俊. 基于偏最小二乘法的高光谱水面油膜厚度估算[J]. 国土资源遥感, 2019, 31(2): 111-117.
[13] 梁林林, 江利明, 周志伟, 陈玉兴, 孙亚飞. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感, 2019, 31(2): 180-186.
[14] 吕野, 胡翔云. 利用增量式马尔科夫随机场分割提取高空间分辨率遥感影像道路[J]. 国土资源遥感, 2018, 30(3): 76-82.
[15] 袁益琴, 何国金, 江威, 王桂周. 遥感视频卫星应用展望[J]. 国土资源遥感, 2018, 30(3): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发