Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 49-54    DOI: 10.6046/zrzyyg.2022504
  地球数据共享和知识服务 本期目录 | 过刊浏览 | 高级检索 |
地球观测资源的知识表达方法研究
林鸣1(), 金梦1, 刘昱甫1, 白玉琪1,2()
1.清华大学地球系统科学系,东亚迁徙鸟类与栖息地生态学教育部野外科学观测研究站,清华大学全球变化研究院,北京 100084
2.清华大学中国城市研究院,北京 100084
Knowledge representation for Earth observation resources
LIN Ming1(), JIN Meng1, LIU Yufu1, BAI Yuqi1,2()
1. Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds and Their Habitatses, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
2. Tsinghua Urban Institute, Tsinghua University, Beijing 100084, China
全文: PDF(2297 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地球观测组织在第十六届全会和部长级峰会上提出了构建“对地观测应用数字图书馆”的新目标,强调从“推动开放数据”向“推动开放科学”的深入,旨在完成数据、算法、文献、案例等知识资源的管理和共享,进一步推动地球观测在全球变化等领域的全面应用和知识服务。该文以此为研究背景,详细梳理了地球科学变量概念体系、地球观测卫星和载荷、观测和模拟数据产品以及学术文献开放知识库等地球观测数据资源。基于语义网和知识图谱相关的理论和技术,构建了包含地球科学变量、遥感卫星、观测载荷、观测和模拟数据集、期刊和学术文献共6类地球观测知识本体和实例。该研究的知识表达结果将有助于地球观测应用领域数据和知识的表达、管理和集成,有助于发现数据和知识的潜在关联,提高科研效率,促进科学发现。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林鸣
金梦
刘昱甫
白玉琪
关键词 地球观测知识枢纽知识表达本体知识图谱    
Abstract

At its 16th Plenary Session and Ministerial Summit, the Group on Earth Observations (GEO) proposed a new goal to build a “digital library for Earth observation applications”, highlighting the transition from “open data” to “open science”. It aims to achieve the management and sharing of knowledge resources, including data, algorithms, literature, and cases, thereby facilitating the comprehensive application and knowledge service provision of Earth observations in fields such as global change. Under this research background, this study systematically examined Earth observation data resources, including the conceptual system of Earth science variables, Earth observation satellites and payloads, observational and simulated data products, and open knowledge bases of academic literature. Based on the theories and techniques related to the Semantic Web and Knowledge Graph, this study established the Earth observation knowledge ontology with corresponding instances, involving Earth science variables, remote sensing satellites, observation payloads, observational and simulated datasets, journals, and academic literature. The knowledge representation results of this study will contribute to the representation, management, and integration of data and knowledge in the field of Earth observation applications. Moreover, they facilitate the discovery of potential associations between data and knowledge, enhancing the efficiency of scientific research and advancing scientific discovery.

Key wordsEarth observation    knowledge hub    knowledge representation    ontology    knowledge graph
收稿日期: 2022-10-10      出版日期: 2025-12-31
ZTFLH:  TP391.1  
  TP79  
基金资助:国家重点研发计划项目“面向开放科学的国际地球观测系统互操作体系研究与示范”(2019YFE0126400)
通讯作者: 白玉琪(1976-),男,博士,教授,主要从事地球空间数据基础设施及其应用研究。Email: yuqibai@tsinghua.edu.cn
作者简介: 林鸣(1998-),男,博士研究生,主要从事地球观测知识表达和信息服务研究。Email: m-lin20@mails.tsinghua.edu.cn
引用本文:   
林鸣, 金梦, 刘昱甫, 白玉琪. 地球观测资源的知识表达方法研究[J]. 自然资源遥感, 2025, 37(6): 49-54.
LIN Ming, JIN Meng, LIU Yufu, BAI Yuqi. Knowledge representation for Earth observation resources. Remote Sensing for Natural Resources, 2025, 37(6): 49-54.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022504      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/49
Fig.1  地球观测知识本体和实例的内容
Fig.2  知识本体和实例构建的流程示意图
Fig.3  地球观测知识本体和实例的关联可视化示例
[1] Wulder M A, Coops N C. Satellites:Make Earth observations open access[J]. Nature, 2014, 513(7516):30-31.
doi: 10.1038/513030a
[2] Nativi S, Mazzetti P, Santoro M, et al. Big data challenges in building the Global Earth Observation System of Systems[J]. Environmental Modelling & Software, 2015,68:1-26.
[3] Zhu Z, Wulder M A, Roy D P, et al. Benefits of the free and open Landsat data policy[J]. Remote Sensing of Environment, 2019,224:382-385.
[4] Nativi S, Santoro M, Giuliani G, et al. Towards a knowledge base to support global change policy goals[J]. International Journal of Digital Earth, 2020, 13(2):188-216.
doi: 10.1080/17538947.2018.1559367
[5] 王鑫, 陈蔚雪, 杨雅君, 等. 知识图谱划分算法研究综述[J]. 计算机学报, 2021, 44(1):235-260.
Wang X, Chen W X, Yang Y J, et al. Research on knowledge graph partitioning algorithms:A survey[J]. Chinese Journal of Computers, 2021, 44(1):235-260.
[6] 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8):2161-2186.
doi: 10.11772/j.issn.1001-9081.2021040662
Tian L, Zhang J C, Zhang J H, et al. Knowledge graph survey:Representation,construction,reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8):2161-2186.
[7] 封皓君, 段立, 张碧莹. 面向知识图谱的知识推理综述[J]. 计算机系统应用, 2021, 30(10):21-30.
Feng H J, Duan L, Zhang B Y. Overview on knowledge reasoning for knowledge graph[J]. Computer Systems and Applications, 2021, 30(10):21-30.
[8] Chen H J, Hu N, Qi G L, et al. OpenKG chain:A blockchain infrastructure for open knowledge graphs[J]. Data Intelligence, 2021, 3(2):205-227.
[9] Li J, Liu R, Xiong R. A Chinese geographic knowledge base for GIR[C]//2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2017:361-368.
[10] Chen J Y, Deng S M, Chen H J. CrowdGeoKG:Crowdsourced geo-knowledge graph[C]// Knowledge Graph and Semantic Computing.Language,Knowledge,and Intelligence. Springer Singapore, 2017:165-172.
[11] Dsouza A, Tempelmeier N, Yu R, et al. WorldKG:A world-scale geographic knowledge graph[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, 2021:4475-4484.
[12] Parsons M A, Duerr R, Godøy Ø. The evolution of a geoscience standard:An instructive tale of science keyword development and adoption[J]. Geoscience Frontiers, 2023, 14(5):101400.
doi: 10.1016/j.gsf.2022.101400
[13] Committee on Earth Observation Satellites. The CEOS database[DB/OL] (2021-10-1)[2022-10-25].http://database.eohandbook.com/index.aspx.
[14] Balogh W, Kurino T. The world meteorological organization and space-based observations for weather,climate,water and related environmental services[M]// Space Capacity Building in the XXI Century. Springer International Publishing, 2020:223-232.
[15] Ramapriyan H K, Behnke J, Sofinowski E, et al. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)[M].Springer Berlin Heidelberg, 2010.
[16] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017,202:18-27.
[17] Petrie R, Denvil S, Ames S, et al. Coordinating an operational data distribution network for CMIP6 data[J]. Geoscientific Model Development, 2021, 14(1):629-644.
doi: 10.5194/gmd-14-629-2021
[18] Hendricks G, Tkaczyk D, Lin J, et al. Crossref:The sustainable source of community-owned scholarly metadata[J]. Quantitative Science Studies, 2020, 1(1):414-427.
doi: 10.1162/qss_a_00022
[19] Wang K S, Shen Z H, Huang C Y, et al. Microsoft academic graph:When experts are not enough[J]. Quantitative Science Studies, 2020, 1(1):396-413.
doi: 10.1162/qss_a_00021
[20] Sinha A, Shen Z H, Song Y, et al. An overview of Microsoft Academic Service (MAS) and applications[C]// Proceedings of the 24th International Conference on World Wide Web.ACM, 2015:243-246.
[21] Priem J, Piwowar H, Orr R. OpenAlex:A fully-open index of scholarly works,authors,venues,institutions,and concepts[J/OL]. arXiv, 2022(2022-05-04).https://arxiv.org/abs/2205.01833.
[1] 陈栾杰, 李玮超, 彭玲, 陈嘉辉, 高翔. 基于时空知识图谱的地籍数据质检与更新方法研究[J]. 自然资源遥感, 2023, 35(1): 243-250.
[2] 景贵飞. 开放科学对全球综合地球观测系统建设影响分析[J]. 国土资源遥感, 2020, 32(4): 1-7.
[3] 本刊. 先进的陆地观测卫星(ALOS)及其3种载荷[J]. 国土资源遥感, 1999, 11(3): 9-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发