Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (4) : 40-45     DOI: 10.6046/gtzyyg.2010.04.09
Technology and Methodology |
The Application of Extended LBP Texture in High Resolution Remote Sensing Image Classification
 SONG Ben-Qin, LI Pei-Jun
Institute of Remote Sensing and GIS, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Download: PDF(930 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

High-resolution remote sensing images have rich texture information, and combined texture information and image spectral information can improve the recognition accuracy of surface feature. In this paper, a new extended Local Binary Patterns (LBP) texture was applied to the high-resolution images classification in comparison with classifications using spectral data only and using combined spectral data and LBP texture features. The results show that the extended LBP has a good anti-noise performance, and the classification of image including the extended LBP texture can achieve a higher accuracy than the classifications using spectral data alone and using combined spectral data and LBP texture features.

Keywords Hyperspectral imaging      Minerals identification      Spectrum decision rules      Hyperion data      Qulong     
: 

TP 75

 
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAN Fu-ping
WANG Run-sheng
YANG Su-ming
Cite this article:   
GAN Fu-ping,WANG Run-sheng,YANG Su-ming. The Application of Extended LBP Texture in High Resolution Remote Sensing Image Classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 40-45.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.04.09     OR     https://www.gtzyyg.com/EN/Y2010/V22/I4/40

[1]Zhang L,Huang X,Huang B,et al. A Pixel Shape Index Coupled with Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(10):2950-2961.

[2]Li P J,Cheng T,Guo J C. Multivariate Image Texture by Multivariate Variogram for Multispectral Image Classification[J].Photogrammetric Engineering and Remote Sensing,2009,75(2):147-157.

[3]Marceau D J,Howarth P J,Dubois J M,et al. Evaluation of the Grey-Level Co-occurrence Matrix Method for Land-Cover Classification Using SPOT Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):513-519.

[4]Gong P,Marceau D J,Howarth P J. A Comparison of Spatial Feature Extraction Algorithms for Land-Use Classification with SPOT HRV Data [J]. Remote Sensing of Environment,1991,40:137-151.

[5]黄颖端,李培军,李争晓. 基于地统计学的图像纹理在岩性分类中的应用[J]. 国土资源遥感,2003(3):45-49.

[6]Haralick R M,Shanmugam K,Dinstein I. Texture Feature for Image Classification [J]. IEEE Transactions on Systems, Man and Cybermetics,1973,3:610-625.

[7]吴高洪,章毓晋,林行刚. 利用小波变换和特征加权进行纹理分割[J]. 中国图象图形学报,2001,6(4):333-337.

[8]Ojala T,Pietikainen M,Menp T. Multiresolutin Gray Scale and Rotation Invariant Texture Analysis with Local Binary Pattern [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.

[9]Kyllnen J,Pietikinen M. Visual Inspection of Parquet Slabs by Combining Color and Texture[G]∥Proc IAPR Workshop on Machine Vision Applications (MVA'00).Tokyo:2000:187-192.

[10]Feng X,Pietikinen M,Hadid A. Facial Expression Recognition with Local Binary Patterns and Linear Programming [J]. Pattern Recognition and Image Analysis,2005,15(2):550-552.

[11]Zhou H, Wang R S, Wang C. A Novel Extended Local-Binary-Pattern Operator for Texture Analysis[J].Information Sciences,2008,178:4314-4325.

[12]Ojala T, Pietikinen M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distributions [J]. Pattern Recognition,1996,29(1):51-59.

[13]Menp T,Pietikinen M. Texture Analysis with Local Binary Patterns[G]∥Chen C H, Wang P S P.Handbook of Pattern Recognition and Computer Vision.3rd ed World Scientific.2005:197-216.

[14]李全,王海燕,李霖. 基于最大似然分类算法的土地覆盖分类精度控制研究[J]. 国土资源科技管理,2005(4):42-45.

[1] FENG Mingbo, NIU Zheng. Chlorophyll content retrieve of vegetation using Hyperion data based on empirical models[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 71-77.
[2] ZHOU Qiang, GAN Fu-Ping, WANG Run-Sheng, CHEN Jian-Ping. MINERAL AUTO-IDENTIFICATION BASED ON
HYPERSPECTRAL IMAGING DATA AND ITS APPLICATION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 28-31.
[3] GAN Fu-Ping, ZHANG Zong-Gui, WANG Run-Sheng, YANG Kai, LIU Sheng-Wei, YAN Bo-Kun. SPECTRAL APPLICATION IN SPECTRAL RECONSTRUCTION
AND VALIDATION BASED ON HYPERSPECTRAL IMAGING DATA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(1): 12-16.
[4] GAN Fu-ping, WANG Run-sheng, YANG Su-ming. STUDYING ON THE ALTERATION MINERALS IDENTIFICATION USING HYPERION DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(4): 44-50.
[5] Wu Peizhong . TECHNICAL FEATURES AND DATA APPLICATIONS OF SATELLITE_BASED HYPERSPECTRAL IMAGING INSTRUMENT[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(3): 31-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech