Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (1) : 71-77     DOI: 10.6046/gtzyyg.2014.01.13
Technology and Methodology |
Chlorophyll content retrieve of vegetation using Hyperion data based on empirical models
FENG Mingbo1,2,3, NIU Zheng1,2
1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
2. The State Key Laboratory of Remote Sensing Science, Chinese Academy of Sciences, Beijing 100101, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(1114 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Modeling using empirical methods based on Hyperion is a fast and accurate way to retrieve vegetation chlorophyll content. In this paper,the measured spectra and simulated Hyperion spectra were analyzed,the correlation between chlorophyll content and reflectance with its change forms and the relation between chlorophyll content and red edge parameters as well as vegetation indexes were calculated to obtain the most accurate modeling method. The vegetation index of modified simple ratio(MSR)has a significant correlation with chlorophyll content,and its regression model can retrieve chlorophyll concentration accurately. Using MSR and measured chlorophyll content,the authors built the regression model based on Hyperion data and then established the chlorophyll concentration profile. The chlorophyll concentration profile of Zhangye City was computed and a high-accuracy was achieved,with its relative error less than 5%.

Keywords remote sensing dynamic monitoring of land use      mean shift      MPI      segmentation parameters     
:  TP751.1  
Issue Date: 08 January 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Yuan
LIU Shunxi
CHEN Jingbo
WANG Zhongwu
LIU Xiaoyi
WU Bin
Cite this article:   
YUAN Yuan,LIU Shunxi,CHEN Jingbo, et al. Chlorophyll content retrieve of vegetation using Hyperion data based on empirical models[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 71-77.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.01.13     OR     https://www.gtzyyg.com/EN/Y2014/V26/I1/71

[1] Curran P J, Dungan J L, Gholz H L.Exploring the relationship between reflectance red edge and chlorophyll content in slash pine[J].Tree Physiol, 1990, 7(1/4):33-38.

[2] Gitelson A A, Merzlyak M N.Signature analysis of leaf reflectance spectra:Algorithm development for remote sensing[J].Plant Physiol, 1996, 148(3/4):493-500.

[3] Jacquemoud S, Ustin S L, Verdebout J, et al.Estimating leaf biochemistry using the PROSPECT leaf optical properties model[J].Remote Sensing of Environment, 1996, 56(3):194-202

[4] Wessman C A, Aber J D, Peterson D L.An evaluation of imagings spectrometry for estimating forest canopy chemistry[J].International Journal of Remote Sensing, 1989, 10(8):1293-1316.

[5] Peñuelas J, Filella I, Gamon J A.Assessment of photosynthetic radiation-use efficiency with spectral reflectance[J].New Phytol, 1995, 131(3):291-296.

[6] 吴朝阳, 牛铮.植物光化学植被指数对叶片生化组分参数的敏感性[J].中国科学院研究生院学报, 2008, 25(3):346-354. Wu C Y, Niu Z.Sensitivity study of photochemical reflectance index to leaf biochemical components[J].Journal of the Graduate School of the Chinese Academy of Sciences, 2008, 25(3):346-354.

[7] 吴朝阳, 牛铮.基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进[J].植物学通报, 2008, 25(6):714-721. Wu C Y, Niu Z.Improvement in linearity between hyperspectral vegetation indices and chlorophyll content, leaf area index based on radiative transfer models[J].Chinese Bulletin of Botany, 2008, 25(6):714-721.

[8] 方慧, 宋海燕, 曹芳, 等.油菜叶片的光谱特征与叶绿素含量之间的关系研究[J].光谱学与光谱分析, 2007, 27(9):1731-1734. Fang H, Song H Y, Cao F, et al.Study on the relationship between spectral properties of oilseed rape leaves and their chlorophyll content[J].Spectroscopy and Spectral Analysis, 2007, 27(9):1731-1734.

[9] Pinar A, Curran P J.Technical note grass chlorophyll and the reflectance red edge[J].International Journal of Remote Sensing, 1996, 17(2):351-357.

[10] Gitelson A, Merzlyak M N.Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L.and Acer platanoides L.leaves.spectral features and relation to chlorophyll estimation[J].Journal of Plant Physiology, 1994, 143(3), 286-292.

[11] Chen J.Evaluation of vegetation indices and modified simple ratio for boreal applications[J].Canadian Journal of Remote Sensing, 1996, 22:229–242.

[12] Daughtry C S T, Walthall C L, Kim M S, et al.Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J].Remote Sensing of Environment, 2000, 74(2):229-239.

[13] Rondeaux G, Steven M, Baret F.Optimization of soil-adjusted vegetation indices[J].Remote Sensing of Environment, 1996, 55(2):95–107.

[14] Curran P J.Remote sensing of foliar chemistry[J].Remote Sensing of Environment, 1989, 30(3):271-278.

[15] Rouse J W, Haas R H, Schell J A, et al.Monitoring the vernal advancements and retrogradation(greenwave effect)of natural vegetation[R].NASA/GSFC, Final Report, Greenbelt, MD, USA, 1974:1-137.

[16] 陈君颖, 田庆久, 亓雪勇, 等.基于Hyperion影像的水稻冠层生化参量反演[J].遥感学报, 2009, 13(6):1106-1121. Chen J Y, Tian Q J, Qi X Y, et al.Rice canopy biochemical concentration retrievals based on Hyperion data[J].Journal of Remote Sensing, 2009, 13(6):1106-1121.

[17] 鞠昌华, 田永超, 朱艳, 等.小麦叠加叶片的叶绿素含量光谱反演研究[J].麦类作物学报, 2008, 28(6):1068-1074. Ju C H, Tian Y C, Zhu Y, et al.Spectral inverse study of stacked leaf chlorophyll concentration in wheat[J].Journal of Triticeae Crops, 2008, 28(6):1068-1074.

[18] 杨敏华, 刘良云, 刘团结, 等.小麦冠层理化参量的高光谱遥感反演试验研究[J].测绘学报, 2002, 31(4):316-321. Yang M H, Liu L Y, Liu T J, et al.Research on a method to retrieve biophysical and biochemical parameters of wheat canopy with hyperspectral remote sensing[J].Acta Geodaetica et Cartographica Sinica, 2002, 31(4):316-321.

[19] 颜春燕.遥感提取植被生化组分信息方法与模型研究[D].北京:中国科学院遥感应用研究所, 2004. Yan C Y.Study on methods and models for vegetation biochemical information retrieval by remote sensing[D].Beijing:Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2004.

[1] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[2] LIU Yufang, ZOU Yarong, LIANG Chao. Progress in remote sensing detection of oil spill damping mechanism[J]. Remote Sensing for Land & Resources, 2020, 32(3): 1-7.
[3] Shicai ZHU, Xiaotong ZHAI, Zongwei WANG. Segmentation of large scale remote sensing image based on Mean Shift[J]. Remote Sensing for Land & Resources, 2020, 32(1): 13-18.
[4] Runsheng LI, Fanzhi CAO, Wen CAO, Shuxiang WANG. Extracting road networks from high-resolution remote sensing images using multi features and methods[J]. Remote Sensing for Land & Resources, 2018, 30(3): 33-39.
[5] YANG Yuwei, DAI Xiaoai, NIU Yutian, LIU Hanhu, YANG Xiaoxia, LAN Yan. Inversion of leaf area index in Heihe Oasis based on CASI data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 179-184.
[6] HU Yong, ZHANG Xiaocheng, MA Zezhong, ZHOU Zhiyue. Rural residential area extraction from UAV remote sensing imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 96-101.
[7] DIAO Mingguang, XUE Tao, LI Jiancun, LI Wenji, LIANG Jiandong. Production data compilation system of mine remote sensing monitoring based on ArcGIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 194-199.
[8] LIU Wei, ZHAO Wenjie, LI Cheng, LI Ting, TAN Haifeng, MA Yangming. Mean shift object tracking based on center symmetric-local similarity number model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 37-45.
[9] LU Heng, FU Xiao, LIU Chao, GUO Jiawei, GOU Si, LIU Tiegang. Study of method for fast segmentation based on UAV image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 72-78.
[10] LI Huasheng, HUANG Pingping, SU Ying. A method for road extraction from remote sensing imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 56-62.
[11] YU Bo, WANG Li, NIU Zheng. Analysis of built-up land detection in new Beichuan County based on neutrosophic set[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 106-112.
[12] LIANG Lingfei, ZHANG Chong, PING Ziliang. Remote sensing image fusion based on weighted filter empirical mode decomposition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 61-66.
[13] GE Daqing, YIN Yueping, WANG Yan, ZHANG Ling, GUO Xiaofang, WANG Yi. Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique:A case study of Dezhou, Shandong[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 103-109.
[14] HAN Xiaojing, XING Lixin, PAN Jun, LIU Liwen, ZHOU Caicai, YU Yifan. Improved statistic-empirical topographic correction model and its application[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 187-191.
[15] YUAN Yuan, LIU Shunxi, CHEN Jingbo, WANG Zhongwu, LIU Xiaoyi, WU Bin. Parallel image segmentation technique controlled by land use patch[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 160-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech