Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (4) : 42-45     DOI: 10.6046/gtzyyg.2011.04.08
Technology and Methodology |
The Construction of the Remote Sensing Estimation Models for Reed Biomass in the Lower Reaches of the Tarim River
NIU Ting1,2, LI Xia1, LIN Hai-jun1, ZHAO Zhao1, DONG Dao-rui1
1. College of Grass and Environment, Xinjiang Agricutural University, Urumqi 830052, China;
2. Survey and Design Institute of Water Conservancy and Hydroelectric Power of Xinjiang, Urumqi 830000, China
Download: PDF(793 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The remote sensing estimation models for reed biomass were established by using TM data and the field investigation of reed biomass around the Daxihaizi reservoir in the lower reaches of Tarim river. The results show that the gray values of TM1~5 and TM7,the perpendicular vegetation index(PVI),the brightness vegetation index(BVI) and the normalized difference vegetation index(NDVI)are significantly related to the measured values of Phragmites australis biomass, the fitting precision of the nonlinear regression model is higher than that of the linear regression model,and NDVI has the highest precision in the regression models but TM4 has the lowest precision. The multiple stepwise regression has a higher fitting precision than ordinary regressions. The ordinary linear regressions based on PVI and NDVI and the ordinary nonlinear regression based on TM1 are the best options due to the characteristics of simplicity,reliability and convenience.

Keywords Ecosystem      Soil conservation capacities      Value of soil conservation      Northern Hebei     
:  TP 751.1  
  X 171.4  
Issue Date: 16 December 2011
E-mail this article
E-mail Alert
Articles by authors
LI Xiao-bing
HAN Nian-long
Cite this article:   
XU Xu,LI Xiao-bing,HAN Nian-long. The Construction of the Remote Sensing Estimation Models for Reed Biomass in the Lower Reaches of the Tarim River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 42-45.
URL:     OR

[1] 李霞,侯平,董新光,等.新疆塔里木河下游应急输水植被恢复阶段分析[J].生态学杂志,2005,24(12):1449-1453.

[2] 张宏锋,陈亚宁,陈亚鹏,等.塔里木河下游植物群落的物种数量变化与生态系统动态研究[J]生态学杂志,2004,23(4):21-24.

[3] 杜自强,王建,沈宇丹.山丹县草地地上生物量遥感估算模型[J].遥感技术与应用,2006,21(4):338-343.

[4] 李聪,肖继东,曹占洲,等.应用MODIS数据估算草地生物量[J].干旱区研究,2007,24(3):386-391.

[5] 王正兴,刘闯,赵冰茹,等.利用MODIS增强型植被指数反演草地地上生物量[J].兰州大学学报:自然科学版,2005,41(2):10-16.

[6] 徐多,姬秋梅,德吉央宗,等.利用EOS/MODIS数据估算西藏藏北高原地表草地生物量[J].气象学报,2007,65(4):612-621.

[7] 邓铭江.塔里木河下游生态输水及植被恢复遥感监测评价[J].冰川冻土,2007,29(3):380-386.

[8] 李霞,侯平,杨鹏年.塔里木河下游胡杨对水分条件变化的响应[J].干旱区研究,2006,23(1):26-31.

[9] 牛婷,李霞.塔里木河下游植被恢复遥感模型建立[J].国土资源遥感,2008(2):79-83.

[10] 李霞,侯平,董新光.塔里木河下游断流区胡杨密度调查与分析[J].新疆农业大学学报,2003,26(4):41-44.

[1] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[2] Zhouyang XU. Spatial-temporal dynamics of ecosystem health in Sichuan Province based on PSR model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 251-258.
[3] Yu ZHANG, Xiaoli ZHAO, Lijun ZUO, Zengxiang ZHANG, Jinyong XU. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(3): 132-139.
[4] Riping ZHOU. Assessing the soil erosion control service in the typical area of Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(2): 131-139.
[5] KANG Hongxia, NA Xiaodong, ZANG Shuying. Research on the evaluation of wetland ecosystem services of Songnen Plain during 1980—2010[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 193-200.
[6] Fan Suying. Application of analytic hierarchy process method to ore-prospecting prognosis in northern Hebei[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 125-131.
[7] XU Xu, REN Feipeng, HAN Nianlong. Remote sensing monitoring of spatio-temporal changes of ecosystem service values in Hebei Province, 2000—2009[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 187-193.
[8] YIN Kai, ZHAO Qianjun, WEN Meiping, HUA Lizhong, LIN Tao, SHI Longyu. Assessment of landscape pattern effect and ecosystem services of island urban forest[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 128-133.
[9] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[10] HAO Hui-mei, HAO Yong-li, TIAN Dang-sheng. Dynamic Evaluating Regional Land-cover Changes and Associated Ecosystem's Service Value Based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 115-120.
[11] XU Xu, LI Xiao-bing, HAN Nian-long. The Evaluation of the Ecological Service of Soil Conservation Based on Multi- source Remote Sensing Data: A Case Study of Four Areas in Northern Hebei[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 123-129.
[12] SONG Zhi-Hong, CHEN Hua, LI Xian-Qing. The Restoration of Barren Ecosystems and the Construction of Economic Forest in the Yangtze River Delta Economy District[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 191-193.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech