Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (1) : 139-143     DOI: 10.6046/gtzyyg.2014.01.24
Technology Application |
3D visualization of humidity distribution from FY-3 MWHS and its application to severe weather monitoring
GAO Dawei1, FAN Gaofeng1, HU Yongliang2, ZHANG Xiaowei1, HE Yue1, YU Zhenyan1
1. Zhejiang Climate Center, Hangzhou 310017, China;
2. Zhejiang Meteorlogocal Information Network Center, Hangzhou 310017, China
Download: PDF(1176 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using IDL and based on the VIRR and MWHS instruments on the FY-3 satellite, the authors developed a software called "FY-3 microwave humidity 3D visualization display". According to different monitoring periods, the software can automatically generate a series of pictures composed by VIRR B6,B2,B1 and microwave humidity distribution at 4 different altitudes (ground, 850 hPa, 500 hPa and 300 hPa) from MWHS (day), or can generate a series of pictures from black body temperture(TBB) of VIRR B5 and microwave humidity distribution at 4 different altitudes from MWHS (night). The utilization of this software in tropical cyclone‘SOALA’and rainfall monitoring shows that the 3D visualization, which combines and strengthens the advantages from VIRR and MWHS data on FY-3, is simple and easy to understand. The software can be a useful means in monitoring and warning of severe weathers such as tropical cyclone and rainfall.

Keywords image mosaic      optimal seam-line      method of minimum gradient in local area      difference method for seam-line removal     
:  TP79  
Issue Date: 08 January 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Hong
ZHENG Yue
SUN Wenbang
Cite this article:   
CHENG Hong,ZHENG Yue,SUN Wenbang. 3D visualization of humidity distribution from FY-3 MWHS and its application to severe weather monitoring[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 139-143.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.01.24     OR     https://www.gtzyyg.com/EN/Y2014/V26/I1/139

[1] Zhang P, Yang J, Dong C H, et al.General introduction on payloads, ground segment and data application of Fengyun 3A[J].Frontiers of Earth Science in China, 2009, 3(3):367-373.

[2] 范天锡.风云三号气象卫星的特点和作用[J].气象科技, 2002, 30(6):321-327. Fan T X.Characteristic and function of Y-3 meteorological satellite[J].Meteorological Science and Technology, 2002, 30(6):321-327.

[3] 杨军, 董超华, 卢乃锰, 等.新一代风云极轨气象卫星业务产品及应用[M].北京:科学出版社, 2011:5-6. Yang J, Dong C H, Lu N M, et al.The new generation polar-orbiting meteorological satellite of China:Products and applications[M].Beijing:Science Press, 2011:5-6.

[4] 国家卫星气象中心.HDF5.0使用简介[EB/OL].[2013-03-21].http://fy3.satellite.cma.gov.cn/PortalSite/StaticContent/DocumentDownload.aspx. National Satellite Meteological Center.HDF5.0 user's guide[EB/OL].[2013-03-21].http://fy3.satellite.cma.gov.cn/PortalSite/StaticContent/DocumentDownload.aspx.

[5] 张鹏, 杨虎, 邱红, 等.风云三号卫星的定量遥感应用能力[J].气象科技进展, 2012, 2(4):6-11. Zhang P, Yang H, Qiu H, et al.Quantitative remote sensing from the current Fengyun 3 satellites[J].Advances in Meteorological Science and Technology, 2012, 2(4):6-11

[6] 何杰颖, 张升伟.FY-3A星MWHS反演中纬度和热带大气水汽[J].遥感学报, 2012, 16(3):570-578. He J Y, Zhang S W.Humidity retrieval in mid-latitude and tropical regions using FY-3 MWHS[J].Journal of Remote Sensing, 2012, 16(3):570-578.

[7] 古岩松, 王振占, 李靖, 等.风云三号A星微波湿度计主探测通道辐射特性[J].应用气象学报, 2010, 21(3):335-342. Gu Y S, Wang Z Z, Li J, et al.The radiometric characteristics of sounding channels for FY-3A/MWHS[J].Journal of Applied Meteorological Science, 2010, 21(3):335-342.

[8] 董彦卿.IDL程序设计:数据可视化与ENVI二次开发[M].北京:高等教育出版社, 2012. Dong Y Q.IDL program designing:Data visualing and ENVI secondary developing[M].Beijing:Higher Education Press, 2012.

[9] 国家卫星气象中心.FY-3A定标信息参数[EB/OL].[2013-03-21].http://satellite.cma.gov.cn/portalsite/default.aspx. National Satellite Meteological Center.FY-3A calibration information parameters[EB/OL].[2013-03-21].http://satellite.cma.gov.cn/portalsite/default.aspx.

[1] LI Penglong, DING Yi, HU Yan, LUO Ding, DUAN Songjiang, SHU Wenqiang. A method for rapid UAV images mosaicking based on GPU parallel computing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 57-63.
[2] BU Kun, WANG Zhiliang, WANG Juanle, ZHANG Shuwen, YANG Jiuchun, Yu Lingxue. Implementation of plane split model in remote sensing image mosaicking[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 225-230.
[3] CHENG Hong, ZHENG Yue, SUN Wenbang. Mosaic algorithm for remote sensing images based on minimum gradient point in local area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 31-36.
[4] NI Zhong-Yun, HE Zheng-Wei, WU Hua, LIU Ting-Ting. A Preliminary Discussion on Typical Problems in the Remote Sensing Project of Tibetan Mineral Resources Potential Evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 97-101.
[5] ZHANG Deng-Rong, ZHANG Han-Kui, YU Le, CHEN Qian. Multi Remote Sensing Image Mosaic Based on Valid Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 39-43.
[6] HUANG Shi-Cun, LI Xing-Chao, LU Yi-Lin, DU Quan-Liang. THE MOSAIC AND MAPPING OF CHINA DIGITAL IMAGES BASED ON CBERS-02 DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(3): 42-44.
[7] CAO Tong, HU Wei-Min . STUDY ON THE EARTH CORRECTION OF TM AND THE MOSAIC METHOD[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(3): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech