Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (2) : 177-183     DOI: 10.6046/gtzyyg.2014.02.28
Technology Application |
Spatial-temporal analysis of urban heat island effect and surface parameters variation in Nanjing City
LI Xinyu, DU Peijun, ALIM Samat
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
Download: PDF(6550 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In this paper, ground surface parameters such as normalized difference vegetation index (NDVI), modified normalized difference water index (MNDWI), normalized difference build-up index (NDBI) and normalized difference impervious surface index (NDISI) were extracted from TM (1989) and ETM+ (2001,2010) images of Nanjing, and land surface temperature was retrieved from thermal infrared image so as to make a comparative analysis of factors responsible for the variation of each parameter at the temporal and spatial level. The authors also analyzed the correlations between ground surface parameters and land surface temperatures. The results of the experiments show that land surface temperature is positively correlated with NDISI and NDBI but negatively correlated with NDVI. Further analysis shows that NDISI, NDBI of Nanjing City have been significantly increased, vegetation coverage decreased and the urban heat island effect exacerbated in the past 20 years, and these trends are in accordance with the trend of urban sprawl. The research result of this experiment has certain reference value for revealing the urban heat island effect, optimizing land use allocation and boosting eco-city construction of Nanjing.
Keywords image registration      polynomial regression model      error-in-variables(EIV) model      weighted total least squares(WTLS)      error statistics and analysis     
:  TP79  
Issue Date: 28 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zheng
LI Yongshu
CHU Bin
TANG Min
Cite this article:   
LI Zheng,LI Yongshu,CHU Bin, et al. Spatial-temporal analysis of urban heat island effect and surface parameters variation in Nanjing City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 177-183.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.02.28     OR     https://www.gtzyyg.com/EN/Y2014/V26/I2/177
[1] Roth M,Oke T R,Emery W J.Satellite derived urban heat islands from three coastal cities and the utilization of such data in urban climatology[J].International Journal of Remote Sensing,1989,10(11):1699-1720.
[2] Owen T W,Carlson T N,Gillies R R.An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climate effect of urbanization[J].International Journal of Remote Sensing,1998,19(9):1663-1681.
[3] Sailor D J.Simulated urban climate response to modifications in surface albedo and vegetative cover[J].Journal of Applied Meteorology,1995,34(7):1694-1704.
[4] Ridd M K.Exploring a V-I-S(vegetation-impervious surfacesoil)model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities[J].International Journal of Remote Sensing,1995,16(12):2165-2185.
[5] Hu X F,Weng Q H.Estimation of impervious surfaces of Beijing,China,with spectral normalized images using linear spectral mixture analysis and artificial neural network[J].Geocarto International,2010,25(3):231-253.
[6] 王桂玲,蒋维楣,魏鸣.城市热岛效应的卫星遥感分析[J].南京气象学院学报,2007,30(3):298-304. Wang G L,Jiang W M,Wei M.An assessment of urban heat island effect using remote sensing data[J].Journal of Nanjing Institute of Meteorology,2007,30(3):298-304.
[7] 徐永明,魏鸣,吕晶晶.基于Landsat TM影像的陆面参数反演综合研究[J].科技创新导报,2008,15:14. Xu Y M,Wei M,Lv J J.Comprehensive study on land surface parameters inversion use landsat TM images[J].Science and Technology Innovation Herald,2008,15:14.
[8] Kammerbauer J,Ardon C.Land use dynamics and landscape change pattern in a typical watershed in the hillside region of central Honduras[J].Agriculture,Ecosystems & Environment,1999,75(1/2):93-100.
[9] Chander G,Markham B.Revised Landsat5 TM radiometric calibration procedures and postcalibration dynamic ranges[J].IEEE Transactionson Geoscience and Remote Sensing,2003,41(11):2674-2677.
[10] Chander G,Markham B L,Helder D L.Summary of current radiometric calibration coefficients for Landsat MSS,TM,ETM+and EO-1 ALI sensors[J].Remote Sensing of Environment,2009,113(5):893-903.
[11] Liang S L,Fang H L,Chen M Z.Atmospheric correction of Landsat ETM+land surface imagery-part I:Methods[J].IEEE Transactions on Geosciences and Remote Sensing,2001,39(11):2490-2498.
[12] Rouse J W,Haas R H,Schell J A,et al.Monitoring vegetation systems in the great plains with ERTS[C]//NASA.Goddard Space Flight Center 3 d ERTS-1 Symp,1974,1:309-317.
[13] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. Xu H Q.A Study on information extraction of water body with the modified normalized difference water index(MNDWI)[J].Journal of Remote Sensing,2005,9(5):589-595.
[14] Zha Y,Gao J,Ni S.Use of normalized difference built-up index in automatically mapping urban arlas from TM imagery[J].International Journal of Remote Sensing,2003,24(3):583-594.
[15] 徐涵秋.一种快速提取不透水面的新型遥感指数[J].武汉大学学报:信息科学版,2008,33(11):1150-1153. Xu H Q.A new remote sensing index for fastly extracting impervious surface information[J].Geomatics and Information Science of Wuhan University,2008,33(11):1150-1153.
[16] Artis D A,Carnahan W H.Survey of emissivity variability in thermography of urban areas [J].Remote Sensing of Environment,1982,12(4):313-329.
[17] Markham B L,Barker J L.Spectral characterization of the Landsat thematic mapper sensors[J].International Journal of Remote Sensing,1985,6(5):697-716.
[18] Sobrino J A,Jimenez-Munoz J C,Paolini L.Land surface temperature retrieval from Landsat TM5[J].Remote Sensing of Environment,2004,90(4):434-440.
[19] Li F Q,Jackson T J,Kustas W P,et al.Deriving land surface temperature from Landsat5 and 7 during SMEX02/SMACEX[J].Remote Sensing of Environment,2004,92(4):521-534.
[1] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[2] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[3] Famao YE, Wei LUO, Yanfei SU, Xuqing ZHAO, Hui XIAO, Weidong MIN. Application of convolutional neural network feature to remote sensing image registration[J]. Remote Sensing for Land & Resources, 2019, 31(2): 32-37.
[4] PAN Jianping, HAO Jianming, ZHAO Jiping. Improved algorithm based on SURF for image registration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 110-115.
[5] LI Fuyu, YE Famao. Summarization of SIFT-based remote sensing image registration techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 14-20.
[6] SONG Zhili. Automatic approach based on point and curve features for multimodal remote sensing image registration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 48-54.
[7] LI Zheng, LI Yongshu, CHU Bin, TANG Min. UAV image registration based on the weighted total-least-squares[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 69-73.
[8] LI Weifeng, ZHOU Jinqiang, FANG Shenghui. Image registration method based on improved Hausdorff distance[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 93-98.
[9] ZHANG Yunsheng, ZOU Zhengrong. Automatic registration method for remote sensing images based on improved ORB algorithm[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 20-24.
[10] YANG Dehe, CHEN Yijin, YANG Xi, LYU Jingguo, ZHANG Zixin, ZHANG Shuai. Automatic registration of multi-source images for extraction of earthquake damage information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 56-60.
[11] Gao Feng . AUTOMATIC RELATIVE ORIENTATION OF MULTI-ANGLE REMOTE SENSED IMAGERY CONDUCTED BY GPS[J]. REMOTE SENSING FOR LAND & RESOURCES, 1997, 9(4): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech