Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (3) : 48-54     DOI: 10.6046/gtzyyg.2014.03.08
Technology and Methodology |
Automatic approach based on point and curve features for multimodal remote sensing image registration
SONG Zhili
Shanghai Institute of Technology, Shanghai 201418, China
Download: PDF(2493 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Due to the significant spectral difference in multimodal image registration, the rate of correctly matched feature-points calculated with point-feature detecting and matching algorithms, such as speed up Robust features,SURF, is quite low in some difficult cases. In order to solve this issue, this paper proposes a novel image registration approach with the help of point and curve features. It adopts the location information indexed by the correct matching pair of feature-points and transformation information determined by the pair of correct matching curves simultaneously. Also, the feasibility and advantages of this algorithm were all confirmed by the experiments in this paper. The results show that this method can achieve automatically the registration of the multi-modal remote sensing images in the completely unattended case and align some kinds of remote sensing images automatically. In addition, it is more robust and reliable.
Keywords vegetation-impervious surface-soil(V-I-S)model      urban impervious surface area      land surface temperature(LST)      urban heat island      correlation analysis     
:  TP751.1  
Issue Date: 01 July 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Keming
ZHOU Yujie
QI Jianwei
WANG Linwei
LIU Shiwen
Cite this article:   
YANG Keming,ZHOU Yujie,QI Jianwei, et al. Automatic approach based on point and curve features for multimodal remote sensing image registration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 48-54.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.03.08     OR     https://www.gtzyyg.com/EN/Y2014/V26/I3/48
[1] Chen S Y,Guo Q,Leung H,et al.A maximum likelihood approach to joint image registration and fusion[J].IEEE Transactions on Image Processing,2011,20(5):1363-1372.
[2] Li Y,Verma R.Multichannel image registration by feature-based information fusion[J].IEEE Transactions on Medical Imaging,2011,30(3):707-720,
[3] 董张玉,赵萍,刘殿伟,等.一种改进的小波变换融合方法及其效果评价[J].国土资源遥感,2012,24(3):44-49. Dong Z Y,Zhao P,Liu D W,et al.An improved wavelet transformation image fusion method and evaluation of its fusion result[J].Remote Sensing for Land and Resources,2012,24(3):44-49.
[4] 任金华,吴绍华,周生路,等.城市不透水面遥感研究进展[J].国土资源遥感,2012,24(4):8-15. Ren J H,Wu S H,Zhou S L,et al.Advances in remote sensing research on urban impervious surface[J].Remote Sensing for Land and Resources,2012,24(4):8-15.
[5] 周海芳,赵进.基于GPU的遥感图像配准并行程序设计与存储优化[J].计算机研究与发展,2012,49(Z1):281-286. Zhou H F,Zhao J.Parallel programming design and storage optimization of remote sensing image registration based on GPU[J].Journal of Computer Research and Development,2012,49(Zl):281-286.
[6] 韩雨,王卫卫,冯象初.基于迭代重加权的非刚性图像配准[J].自动化学报,2011,37(9):1059-1066. Han Y,Wang W W,Feng X C.Iteratively reweighted method based nonrigid image registration[J].Acta Automatica Sinica,2011,37(9):1059-1066.
[7] 支力佳,张少敏,赵大哲,等.融合多种特征点信息的最小生成树医学图像配准[J].计算机研究与发展,2011,48(3):501-507. Zhi L J,Zhang S M,Zhao D Z,et al.Minimum spanning tree fusing multi-feature point information for medical image registration[J].Journal of Computer Research and Development,2011,48(3):501-507.
[8] 肖明,胡天江,潘亮,等.一种基于点特征的异源SAR图像适配性分析方法[J].自动化学报,2012,38(12):1958-1967. Xiao M,Hu T J,Pan L,et al.A point-feature method for multi-source SAR image matching suitability analysis[J].Acta Automatica Sinica,2012,38(12):1958-1967.
[9] 李映,崔杨杨,韩晓宇.基于线特征和控制点的可见光和SAR图像配准[J].自动化学报,2012,38(12):1968-1974. Li Y,Cui Y Y,Han X Y.Optical image and SAR image registration based on linear features and control points[J].Acta Automatica Sinica,2012,38(12):1968-1974.
[10] Wong A,Clausi D A.Automatic registration of remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1483-1493.
[11] 杨德贺,陈宜金,杨溪,等.面向震害信息提取的多源遥感图像自动配准[J].国土资源遥感,2013,25(3):56-60. Yang D H,Chen Y J,Yang X,et al.Automatic registration of multi-source images for extraction of earthquake damage information[J].Remote Sensing for Land and Resources,2013,25(3):56-60.
[12] 李慧,蔺启忠,刘庆杰.基于FAST和SURF的遥感图像自动配准方法[J].国土资源遥感,2012(2):28-33. Li H,Lin Q Z,Liu Q J.An automatic registration method of remote sensing imagery based on FAST corner and SURF descriptor[J].Remote Sensing for Land and Resources,2012(2):28-33.
[13] Lowe D G.Object recognition from local scale-invariant features[C]//The Proceedings of the Seventh IEEE International Conference on Computer Vision.Kerkyra:IEEE,1999,2:1150-1157.
[14] Bay H,Ess A,Tuytelaars T,et al.Speeded-up robust features(SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359.
[15] Keller Y,Averbuch A.Multisensor image registration via implicit similarity[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(5):794-801.
[16] Chen J,Tian J,Lee N,et al.A partial intensity invariant feature descriptor for multimodal retinal image registration[J].IEEE Transactions on Biomedical Engineering,2010,57(7):1707-1718.
[17] Alajlan N,Rube I E,Kamel M S,et al.Shape retrieval using triangle-area representation and dynamic space warping[J].Pattern Recognition,2007,40(7):1911-1920.
[1] WANG Meiya, XU Hanqiu. A comparative study on the changes in heat island effect in Chinese and foreign megacities[J]. Remote Sensing for Natural Resources, 2021, 33(4): 200-208.
[2] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[3] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[4] Qi CAO, Manjiang SHI, Liang ZHOU, Ting WANG, Lijun PENG, Shilei ZHENG. Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city[J]. Remote Sensing for Land & Resources, 2019, 31(4): 190-198.
[5] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[6] Zhenlan JIANG, Zhenbin GONG, Hui PAN, Baoyu ZHANG, Tingfen WANG. Application of local spatial autocorrelation indices to the delimitation of urban heat island[J]. Remote Sensing for Land & Resources, 2018, 30(3): 136-142.
[7] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[8] Jinghu PAN, Leilei DONG, Nayun WANG, Zijin YANG. A multiscale study of thermal environment pattern in Lanzhou-Xining agglomeration[J]. Remote Sensing for Land & Resources, 2018, 30(2): 138-146.
[9] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[10] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
[11] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[12] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[13] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
[14] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
[15] ZHAO Feifei, BAO Nisha, WU Lixin, SUN Rui. Retrieving land surface temperature and soil moisture from HJ-1B data: A case study of Yimin open-cast coal mine region in Hulunbeier grassland[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech