Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (2) : 112-117     DOI: 10.6046/gtzyyg.2015.02.18
Technology Application |
Fractional vegetation cover estimation in northern China and its change analysis
LI Yuwei1, JIA Kun1, WEI Xiangqin2, YAO Yunjun1, SUN Jun3, MOU Liqiu4
1. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China;
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
3. Comprehensive Design Team of Xilinji Forestry Bureau, Da Hinggan Ling 165300, China;
4. Greater Khingan Range Shenzhou Polar Wood Industry Co., Ltd. Yijia, Da Hinggan Ling 165300, China
Download: PDF(4324 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The aim of this study is to analyze the spatial-temporal pattern and change of fractional vegetation cover (FVC) in northern China since 2000. FVC of northern China from 2000 to 2012 was estimated using dimidiate pixel model based on the normalized difference vegetation index (NDVI) calculated by MODIS spectral reflectance data. The FVC change trends and characteristics of the study area during the 13 years were analyzed. The inner annual FVC change trend in northern China indicated that the maximum FVC generally appeared in July or August, which was consistent with the vegetation growth season. The maximum annual FVC showed a slightly increase trend in the whole study area, and the annual increase rate was 0.2%. However, the spatial distribution of maximum annual FVC change trend had great differences. The typical regions of the Three-North Shelter Forest Region such as Northeast China, North China and Loess Plateau region had an obviously increase in maximum annual FVC.
Keywords polarimetric SAR image      complex Wishart distribution      H/Alpha/A decomposition      multiple-component scattering model(MCSM )decomposition      iterative self-organizing data analysis(ISODATA)      clusting algorithm     
:  TP79  
  S127  
Issue Date: 02 March 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jun
DU Peijun
TAN Kun
Cite this article:   
CHEN Jun,DU Peijun,TAN Kun. Fractional vegetation cover estimation in northern China and its change analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 112-117.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.02.18     OR     https://www.gtzyyg.com/EN/Y2015/V27/I2/112
[1] 梁顺林,李小文,王锦地,等.定量遥感:理念与算法[M].北京:科学出版社,2003:382. Liang S L,Li X W,Wang J D,et al.Advanced Remote Sensing:Concepts and Algorithm[M].Beijing:Science Press,2003:382.
[2] 程红芳,章文波,陈锋.植被覆盖度的遥感估算方法研究进展[J].国土资源遥感,2008,20(1):13-18.doi:10.6046/gtzyyg.2008.01.02. Cheng H F,Zhang W B,Chen F.Advances in researches on application of remote sensing method to estimating vegetation coverage[J].Remote Sensing for Land and Resources,2008,20(1):13-18.doi:10.6046/gtzyyg.2008.01.02.
[3] 邢著荣,冯幼贵,杨贵军,等.基于遥感的植被覆盖度估算方法述评[J].遥感技术与应用,2009,24(6):849-854. Xing Z R,Feng Y G,Yang G J,et al.Method of estimating vegetation coverage based on remote sensing[J].Remote Sensing Technology and Application,2009,24(6):849-854.
[4] Zeng X B,Dickinson R E,Walker A,et al.Derivation and evaluation of global 1 km fractional vegetation cover data for land modeling[J].Journal of Applied Meteorology,2000,39(6):826-839.
[5] 江辉.基于遥感的植被覆盖度估算及其动态研究——以鄱阳湖区为例[D].南昌:南昌大学,2005. Jiang H.Study on Vegetation Coverage and its Dynamic Change by Remote Sesing:A Case Study of the Poyang Lake[D].Nanchang:Nanchang University,2005.
[6] Van de Voorde T,Vlaeminck J,Canters F.Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data:A case study on brussels[J].Sensors,2008,8(6):3880-3902.
[7] Xiao J F,Moody A.A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico,USA[J].Moody A.Remote Sensing of Environment,2005,98(2/3):237-250.
[8] North P R J.Estimation of FAPAR,LAI,and vegetation fractional cover from ATSR-2 imagery[J].Remote Sensing of Environment,2002,80(1):114-121.
[9] Gutman G,Ignatov A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].International Journal of Remote Sensing,1998,19(8):1533-1543.
[10] 唐世浩,朱启疆,王锦地,等.三波段梯度差植被指数的理论基础及其应用[J].中国科学:D辑,2003,33(11):1094-1102. Tang S H,Zhu Q J,Wang J D,et al.Principle and application of three-band gradient difference vegetation index[J].Science in China Series D:Earth Sciences,2005,48(2):241-249.
[11] 贾坤,姚云军,魏香琴,等.植被覆盖度遥感估算研究进展[J].地球科学进展,2013,28(7):774-782. Jia K,Yao Y J,Wei X Q,et al.A review on fractional vegetation cover estimation using remote sensing[J].Advances in Earth Science,2013,28(7):774-782.
[12] 宋莎.基于多源遥感数据的植被覆盖度研究[D].成都:四川农业大学,2010. Song S.Retrieval of Vegetation Coverage Using Multi-sensor Remote Sensing Data[D].Chengdu:Sichuan Agricultural University,2010.
[13] 李苗苗,吴炳芳,颜长珍,等.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):153-159. Li M M,Wu B F,Yan C Z,et al.Estimaion of vegetation fraction in the upper basin of Miyun Reservior by remote sensing[J].Resources Science,2004,26(4):153-159.
[14] 陈晋,陈云浩,何春阳,等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422,481. Chen J,Chen Y H,He C Y,et al.Sub-pixel model for vegetation fraction estimation based on land cover classification[J].Journal of Remote Sensing,2001,5(6):416-422,481.
[15] Camacho F,Cernicharo J,Lacaze R,et al.GEOV1:LAI,FAPAR essential climate variables and FCOVER global time series capitalizing over existing products.Part 2:Validation and intercomparison with reference products[J].Remote Sensing of Environment,2013,137:310-329.
[16] Baret F,Weiss M,Lacaze R,et al.GEOV1:LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products.Part1:Principles of development and production[J].Remote Sensing of Environment,2013,137:299-309.
[17] Hansen M C,DeFries R S,Townshend J R G,et al.Towards an operational MODIS continuous field of percent tree cover algorithm:examples using AVHRR and MODIS data[J].Remote Sensing of Environment,2002,83(1/2):303-319.
[18] Huang C Q,Song K,Kim S,et al.Use of a dark object concept and support vector machines to automate forest cover change analysis[J].Remote Sensing of Environment,2008,112(3):970-985.
[19] Su L H.Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis[J].ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(4):407-413.
[20] 梁顺林,袁文平,肖青,等.全球陆表特征参量产品生成与应用研究[J].中国科学院院刊,2013,28(s1):122-131. Liang S L,Yuan W P,Xiao Q,et al.Generation and applications of global land surface satellite(GLASS)products[J].Bulletin of Chinese Academy of Sciences,2013,28(s1):122-131.
[21] 贾维花,廉丽姝,吕宜平,等.基于TM数据的黄河三角洲地区植被覆盖度提取[J].地理信息世界,2012,10(6):62-66,74. Jia W H,Lian L S,Lv Y P,et al.The derivation of vegetation fraction based on TM data in Yellow River Delta[J].Geomatics World,2012,10(6):62-66,74.
[22] Duan H C,Yan C Z,Tsunekawa A,et al.Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data[J].Environmental Earth Sciences,2011,64(4):1011-1020.
[1] Pengyan HUANG, Lijing BU, Yongliang FAN. Integrating visual features in polarimetric SAR image classification[J]. Remote Sensing for Land & Resources, 2020, 32(2): 88-93.
[2] CHEN Jun, DU Peijun, TAN Kun. An improved unsupervised classification scheme for polarimetric SAR image with MCSM-Wishart[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech