Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (1) : 43-49     DOI: 10.6046/gtzyyg.2017.01.07
Technology and Methodology |
Nonlinear analysis method for remote sensing alteration anomalies: A case study of Xinjinchang and Laojinchang in Beishan
HAN Haihui1,2, WANG Yilin1, REN Guangli1, YANG Junlu1, LI Jianqiang1, YANG Min1
1. Xi'an Center of China Geological Survey, Xi'an 710054, China;
2. Institute of Geological Engineering and Surveying, Chang'an University, Xi'an 710054, China
Download: PDF(3780 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The purpose of this study is to explore a new effective method to conduct quantified calculation of the lower threshold. Based on ASTER image, the authors used the fractal model and the change-point analysis model in study areas named Xinjinchang and Laojinchang. The experimental results show that the model could quickly calculate the lower threshold for the alteration anomaly with fractal characteristics, and the model verification results also show that the threshold values are accurate and effective. In addition, field geological survey also indicates that the alteration anomalies delineated by the authors are well in accord with the known orebodies and the spectra of the alteration geological bodies. The authors thus hold that the nonlinear analysis method is a reliable means for extracting alternation anomalies and is also useful for mineral exploitation.

Keywords bathymetry remote sensing      the Xisha Islands      Zhaoshu Island      correlation analysis      regression fitting     
:  TP751.1  
Issue Date: 23 January 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Li
Cite this article:   
LI Li. Nonlinear analysis method for remote sensing alteration anomalies: A case study of Xinjinchang and Laojinchang in Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 43-49.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.01.07     OR     https://www.gtzyyg.com/EN/Y2017/V29/I1/43

[1] 童庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用[M].北京:高等教育出版社,2006. Tong Q X,Zhang B,Zheng L F.Hyperspectral Remote Sensing[M].Beijing:Higher Education Press,2006.
[2] 童庆禧,田国良.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990. Tong Q X,Tian G L.Spectral and Analysis of Typical Earth Objects of China[M].Beijing:Science Press,1990.
[3] Goetz A F H,Rowan L C.Geologic remote sensing[J].Science,1981,211(4484):781-791.
[4] Ninomiya Y,Fu B H,Cudahy T J.Detecting lithology with advanced spaceborne thermal emission and reflection radiometer(ASTER) multispectral thermal infrared "Radiance-at-Sensor" data[J].Remote Sensing of Environment,2005,99(1/2):127-139.
[5] Galvão L S,Almeida-Filho R,Vitorello I.Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands:Evaluation in a tropical savannah environment[J].International Journal of Applied Earth Observation and Geoinformation,2005,7(2):107-114.
[6] Pournamdari M,Hashim M,Pour A B.Spectral transformation of ASTER and landsat TM bands for lithological mapping of soghan ophiolite complex,South Iran[J].Advances in Space Research,2014,54(4):694-709.
[7] 毛晓长,刘文灿,杜建国,等.ETM+和ASTER数据在遥感矿化蚀变信息提取应用中的比较——以安徽铜陵凤凰山矿田为例[J].现代地质,2005,19(2):309-314. Mao X C,Liu W C,Du J G,et al.Comparison between ETM+ and ASTER data for extraction of alteration information:A case study of Fenghuangshan Orefield,Tongling,Anhui Province[J].Geoscience,2005,19(2):309-314.
[8] 杨日红,李志忠,陈秀法.ASTER数据的斑岩铜矿典型蚀变矿物组合信息提取方法——以秘鲁南部阿雷基帕省斑岩铜矿区为例[J].地球信息科学学报,2012,14(3):411-418. Yang R H,Li Z Z,Chen X F.Information extraction of typical alteration mineral assemblage in porphyry copper using aster satellite data,Arequipa province of south Peru[J].Journal of Geo-information Science,2012,14(3):411-418.
[9] 张玉君,曾朝铭,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003(2):44-49,doi:10.6046/gtzyyg.2003.02.11. Zhang Y J,Zeng Z M,Chen W.The methods for extraction of alteration anomalies from the ETM+(TM) data and their application:Method selection and technological flow chart[J].Remote Sensing for Land and Resources,2003,56(2):44-49,doi:10.6046/gtzyyg.2003.02.11.
[10] 陈聆,郭科,柳柄利,等.地球化学矿致异常非线性分析方法研究[J].地球物理学进展,2012,27(4):1701-1707. Chen L,Guo K,Liu B L,et al.The study of non-linear analysis method of geochemical ore-forming anomaly[J].Progress in Geophysics,2012,27(4):1701-1707.
[11] 成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学-中国地质大学学报,2006,31(3):337-348. Cheng Q M.Singularity-generalized self-similarity-fractal spectrum(3S) models[J].Earth Science-Journal of China University of Geosciences,2006,31(3):337-348.
[12] 成秋明,张生元,左仁广,等.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,2009,16(2):185-198. Cheng Q M,Zhang S Y,Zuo R G,et al.Progress of multifractal filtering techniques and their applications in geochemical information extraction[J].Earth Science Frontiers,2009,16(2):185-198.
[13] 杨合群,李英,杨建国,等.北山造山带的基本成矿特征[J].西北地质,2006,39(2):78-95. Yang H Q,Li Y,Yang J G,et al.Main metallogenic characteristics in the Beishan orogen[J].Northwestern Geology,2006,39(2):78-95.
[14] 胡朋.北山南带构造岩浆演化与金的成矿作用[D].北京:中国地质科学院,2007. Hu P.Tectonomagmatic Evolution and Gold Metallogeny in South Beishan Mountain,Northwest China[D].Beijing:Chinese Academy of Geological Sciences,2007.
[15] 成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(3):298-305. Cheng Q M.Singularity of mineralization and multifractal distribution of mineral deposits[J].Bulletin of Mineralogy,Petrology and Geochemistry,2008,27(3):298-305.
[16] 申维.分形混沌与矿产预测[M].北京:地质出版社,2002. Shen W.Fractal and Chaos with Application in Mineral Resource Prediction[M].Beijing:Geology Publishing House,2002.
[17] 梁钰琦,王功文,朱彦彦,等.分形方法在遥感蚀变信息提取中的应用研究[J].遥感技术与应用,2011,26(4):508-511. Liang Y Q,Wang G W,Zhu Y Y,et al.Alteration from ETM+ data rating based on fractal technologies[J].Remote Sensing Technology and Application,2011,26(4):508-511.
[18] 刁海,张达,狄永军,等.基于主成分分析和分形模型的ASTER蚀变异常信息提取[J].国土资源遥感,2011,23(2):75-80.doi:10.6046/gtzyyg,2011.02.14. Diao H,Zhang D,Di Y J,et al.The extraction of alteration anomalies from ASTER data based on principal component analysis and fractal model[J].Remote Sensing for Land and Resources,2011,23(2):75-80.doi:10.6046/gtzyyg,2011.02.14.
[19] 项静恬,史久恩.非线性系统中数据处理的统计方法[M].北京:科学出版社,1997. Xiang J T,Shi J E.The Statistical Method of Data Processing in Nonlinear System[M].Beijing:Science Press,1997.
[20] 韩海辉,高婷,易欢,等.基于变点分析法提取地势起伏度——以青藏高原为例[J].地理科学,2012,32(1):101-104. Han H H,Gao T,Yi H,et al.Extraction of relief amplitude based on change point method:A case study on the Tibetan plateau[J].Scientia Geographica Sinica,2012,32(1):101-104.
[21] Kalinowski A,Oliver S.ASTER Mineral Index Processing Manual[M].Remote Sensing Applications Geoscience Australia,2004.

[1] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[2] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[3] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[4] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
[5] LI Li. Remote sensing bathymetric inversion for the Xisha Islands based on WorldView-2 data: A case study of Zhaoshu Island and South Island[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 170-175.
[6] YANG Yanan, WANG Jinliang, CHEN Guangjie, XI Xiaohuan, WANG Cheng. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 159-165.
[7] YANG Keming, ZHOU Yujie, QI Jianwei, WANG Linwei, LIU Shiwen. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 134-139.
[8] FU Yin-Zhen, WANG Xiao-Qin, JIANG Hong. The Correlation between LAI and Vegetation Index of Masson Pine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 41-46.
[9] XU Yong-Ming, QIN Zhi-Hao, SHEN Yan. The Relationship Between Inter-annual Variations of Land Surface
Temperature and Climate Factors in the Yangtze River Delta
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 60-64.
[10] TIAN Shu-Fang, HONG You-Tang, QIN Xu-Wen. A REMOTE SENSING APPROACH TO THE DEPTH
OF THE HIGHLY CONCENTRATED SALT LAKE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 26-30.
[11] XU Rui-song. THE REMOTE SENSING SURVEY OF OIL AND GAS RESOURCES IN THE SOUTH CHINA SEA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(1): 13-15.
[12] WAN Yu-qing, ZHANG Feng-li, YAN Yong-zhong . THE METHODOLOGICAL RESEARCH OF USING SPECTROMETER DATA TO PREDICT SOIL CONTENT OF WATER[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(2): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech