Please wait a minute...
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 73-79     DOI: 10.6046/gtzyyg.2018.02.10
Estimation of soil moisture with drought indices in Huaihe River Basin of East China
Wen ZHANG1(), Yan REN2(), Xiaolin MA3, Yijie HU4
1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
2. Patent Examination Cooperation Center of the Patent Office,SIPO,Zhengzhou 450046,China
3. Administration of Baisha Reservoir, Yuzhou 461670, China
4. School of Resource and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
Download: PDF(2379 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

In this study, the authors examined the estimation of soil moisture with various drought indices in Huihe River Basin of East China. MODIS data were used for the estimation. Such drought indices as apparent thermal inertia (ATI) and vegetation supply water index (VSWI) were used for the estimation. On the basis of these drought indices, the authors integrated the drought indices into a comprehensive drought index (CDI) for the study to estimate soil moisture in East China. As dimensionless data, CDI cannot represent the actual soil moisture. The authors introduced the measured data, and built the correlation model between CDI and measured data. CDI can therefore be converted to soil moisture through the model. Finally, the authors used the measured data to verify the reliability and accuracy of the estimation results. The results show that the correlation between measured data and estimation data is high, and R 2 values are around 0.7. The method in this study has great application value for estimating soil moisture in large area.

Keywords MODIS      comprehensive drought index      correlation analysis      soil moisture     
:  TP79  
Corresponding Authors: Yan REN     E-mail:;
Issue Date: 30 May 2018
E-mail this article
E-mail Alert
Articles by authors
Xiaolin MA
Yijie HU
Cite this article:   
Wen ZHANG,Yan REN,Xiaolin MA, et al. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
URL:     OR
Fig.1  Sketch map of study area and ground sites
Fig.2  Comparison of fitting relationships
线性模型 N R R2 F Significance F
y=0.265 6x+0.048 6 81 0.87 0.75 434.67 7.43e-34
Tab.1  Linear statistical relationship between measured soil moisture and CDI value in Huaihe River Basin
Fig.3  Distribution of soil moisture in Huaihe River Basin
Fig.4  Comparison of measured soil moisture and estimated soil moisture in Huaihe River Basin
深度 时间 样本数 MaxE ABVR RMSE 平均
5月11日 84 0.055 4 0.024 9 0.030 9
0~10 cm 5月21日 89 0.036 5 0.019 7 0.013 6 0.022 3
6月1日 72 0.013 1 0.019 0 0.022 6
5月11日 85 0.117 4 0.032 9 0.040 3
10~20 cm 5月21日 90 0.102 2 0.026 3 0.030 1 0.036 0
6月1日 72 0.096 3 0.027 6 0.037 8
Tab.2  Error analysis of measured soil moisture with estimated soil moisture
Fig.5  Correlation analysis of measured 0~10 cm soil moisture and estimated soil moisture
[1] Chen C F, Son N T, Chang L Y , et al. Monitoring of soil moisture variability in relation to rice cropping systems in the Vietnamese Mekong Delta using MODIS data[J]. Applied Geography, 2011,31(2):463-475.
doi: 10.1016/j.apgeog.2010.10.002 url:
[2] 刘敏, 王亮亮, 蔡秋鹏 . FDR和TDR测定几种典型土壤含水量的对比分析[J].水利信息化, 2016(6):32-36.
doi: 10.19364/j.1674-9405.2016.06.007 url:
[2] Liu M, Wang L L, Cai Q P . Compaveral typical soil’s water content measuring with FDR and TDR[J].Water Resources Informatization, 2016(6):32-36.
[3] Wagner W, Hahn S, Kidd R , et al. The ASCAT soil moisture product:A review of its specifications,validation results,and emerging applications[J]. Meteorologische Zeitschrift, 2013,22(1):5-33.
doi: 10.1127/0941-2948/2013/0399 url:
[4] Jordan C F . Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969,50(4):663-666.
doi: 10.2307/1936256 url:
[5] Kahle A B . A simple thermal model of the Earth’s surface for geologic mapping by remote sensing[J]. Journal of Geophysical Research, 1977,82(11):1673-1680.
doi: 10.1029/JB082i011p01673 url:
[6] Price J C . Thermal inertia mapping:A new view of the earth[J]. Journal of Geophysical Research, 1977,82(18):2582-2590.
doi: 10.1029/JC082i018p02582 url:
[7] Price J C . On the analysis of thermal infrared imagery:The limited utility of apparent thermal inertia[J]. Remote Sensing of Environment, 1985,18(1):59-73.
doi: 10.1016/0034-4257(85)90038-0 url:
[8] Jackson R D, Pinter Jr P J. Detection of water stress in wheat by measurement of reflected solar and emitted thermal IR radiation [C]//Spectral Signatures of Objects in Remote Sensing.Versailles:Institut National de la Recherche Agronomique, 1981: 399-406.
[9] Carlson T N, Gillies R R, Perry E M . A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews, 1994,9(1/2):161-173.
doi: 10.1080/02757259409532220 url:
[10] Sandholt I, Rasmussen K, Andersen J . A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002,79(2/3):213-224.
doi: 10.1016/S0034-4257(01)00274-7 url:
[11] 赵英时 . 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
[11] Zhao Y S. Analysis Principle and Method of Remote Sensing Applications[M]. Beijing: Science Press, 2003.
[12] 郭月婷, 徐建刚 . 基于模糊物元的淮河流域城市化与生态环境系统的耦合协调测度[J]. 应用生态学报, 2013,24(5):1244-1252.
[12] Guo Y T, Xu J G . Coupling coordination measurement of urbanization and eco-environment system in Huaihe River Basin of China based on fuzzy matter element theory[J]. Chinese Journal of Applied Ecology, 2013,24(5):1244-1252.
[13] 张怡, 何政伟, 薛东剑 . MODIS数据预处理方法[J]. 地理空间信息, 2013,11(3):49-51.
doi: 10.11709/j.issn.1672-4623.2013.03.018 url:
[13] Zhang Y, He Z W, Xue D J . Pre-processing method of MODIS data[J]. Geospatial Information, 2013,11(3):49-51.
[14] 刁伟, 孟令奎, 张东映 , 等. MODIS数据在湖北旱情监测中的应用[J].水利信息化, 2013(1):12-15.
[14] Diao W, Meng L K, Zhang D Y , et al. Application of MODIS data on the drought monitoring of Hubei Province[J].Water Resources Informatization, 2013(1):12-15.
[15] 申广荣, 田国良 . 基于GIS的黄淮海平原旱灾遥感监测研究——作物缺水指数模型的实现[J]. 生态学报, 2000,20(2):224-228.
doi: 10.3321/j.issn:1000-0933.2000.02.009 url:
[15] Shen G R, Tian G L . Remote sensing monitoring of drought in Huanghe, Huaihe and Haihe Plain based on GIS:The calculation of crop water stress index model[J]. Acta Ecologica Sinica, 2000,20(2):224-228.
[16] 王鹏新, 龚健雅, 李小文 . 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报, 2001,26(5):412-418.
doi: 10.3321/j.issn:1671-8860.2001.05.007 url:
[16] Wang P X, Gong J Y, Li X W . Vegetation temperature condition index and its application for drought monitoring[J]. Geomatics and Information Science of Wuhan University, 2001,26(5):412-418.
[17] Nichol J E, Abbas S . Integration of remote sensing datasets for local scale assessment and prediction of drought[J]. Science of the Total Environment, 2015,505:503-507.
doi: 10.1016/j.scitotenv.2014.09.099 pmid: 25461052 url:
[18] Cai G Y, Du M Y, Liu Y. Regional drought monitoring and analyzing using MODIS data:A case study in Yunnan Province [C]//Proceedings of the 4th IFIP TC 12 Conference on Computer and Computing Technologies in Agriculture IV.Nanchang,China:Springer, 2010: 243-251.
[19] 宋荣杰 . 基于遥感的旱区土壤湿度反演方法研究[D]. 杨凌:西北农林科技大学, 2013.
[19] Song R J . Study on Soil Moisture Inversion Method Based on Remote Sensing[D]. Yangling:Northwest A and F University, 2013.
[20] 吴黎, 张有智, 解文欢 , 等. 改进的表观热惯量法反演土壤含水量[J]. 国土资源遥感, 2013,25(1):44-49.doi: 10.6046/gtzyyg.2013.01.08.
doi: 10.6046/gtzyyg.2013.01.08 url:
[20] Wu L, Zhang Y Z, Xie W H , et al. The inversion of soil water content by the improved apparent thermal inertia[J]. Remote Sensing for Land and Resources, 2013,25(1):44-49.doi: 10.6046/gtzyyg.2013.01.08.
[1] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[6] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[7] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[8] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[9] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[10] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[11] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[12] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[13] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[14] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[15] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech