Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 13-19     DOI: 10.6046/gtzyyg.2017.04.03
Research on the self-adaptive matching method of GF-1 satellite imagery considering the features of multi-camera mosaic imaging
HAN Jie1, XIE Yong2, WU Guoxi1, YU Zhengzheng1, QIAN Yuelei1, GUAN Xiaoguo1
1. School of Urban-rural Planning and Architecture, Xuchang University, Xuchang 461000, China;
2. School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(6358 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The high precision matching of satellite images has been a problem of much concern. In this paper, the panchromatic images in the same track of GF-1 satellite PMS sensor are treated as investigated subjects. Based on the time-series statistical results of the offset property of the conjugate points, a self-adaptive image matching method is proposed considering mosaic imaging characteristics. In this method, the self-adaptive algorithm is added in the traditional image matching process. It can realize the self-adaptive selection of the target search window, search range and search direction using the iterative computation. The experiment results prove that the proposed method can achieve high precision self-adaptive matching of the GF-1 panchromatic images in the same track, which is useful for other similar satellites in future.

Keywords unmanned aerial vehicle(UAV)      rural homestead ownership      structure from motion      camera calibration      self-calibration      accuracy verification     
:  TP79  
Issue Date: 04 December 2017
E-mail this article
E-mail Alert
Articles by authors
MA Yongzheng
MO Delin
Cite this article:   
XUE Wu,MA Yongzheng,ZHAO Ling, et al. Research on the self-adaptive matching method of GF-1 satellite imagery considering the features of multi-camera mosaic imaging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 13-19.
URL:     OR

[1] 韩 杰.GF-1卫星影像高精度几何处理方法研究[D].北京:中国科学院遥感与数字地球研究所,2015.
Han J.Study on the High Precision Geometric Processing of GF-1 Satellite Images[D].Beijing:Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences,2015.
[2] 陆春玲,王 瑞,尹 欢.“高分一号”卫星遥感成像特性[J].航天返回与遥感,2014,35(4):67-73.
Lu C L,Wang R,Yin H.GF-1 satellite remote sensing characters[J].Spacecraft Recovery and Remote Sensing,2014,35(4):67-73.
[3] Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[4] 张 力,张继贤.基于多基线影像匹配的高分辨率遥感影像DEM的自动生成[J].武汉大学学报(信息科学版),2008,33(9):943-946.
Zhang L,Zhang J X.Automatic DEM generation from high-resolution satellite imagery based on multiple-baseline image matching[J].Geomatics and Information Science of Wuhan University,2008,33(9):943-946.
[5] 戴激光,宋伟东,贾永红,等.一种新的异源高分辨率光学卫星遥感影像自动匹配算法[J].测绘学报,2013,42(1):80-86.
Dai J G,Song W D,Jia Y H,et al.A new automatically matching algorithm for multi-source high resolution optical satellite images[J].Acta Geodaetica et Cartographica Sinica,2013,42(1):80-86.
[6] 严 明,王智勇,伍 菲,等.CCD几何偏差模型的多波段遥感影像配准[J].遥感学报,2012,16(6):1145-1156.
Yan M,Wang Z Y,Wu F,et al.Multi-spectral image registration method based on CCD geometric bias model[J].Journal of Remote Sensing,2012,16(6):1145-1156.
[7] 马广彬,章文毅,刘定生,等.一种新的卫星多光谱图像自动配准算法[J].遥感技术与应用,2007,22(1):95-100.
Ma G B,Zhang W Y,Liu D S,et al.A new automatic band registration algorithm for satellite multispectral remote sensing images[J].Remote Sensing Technology and Application,2007,22(1):95-100.
[8] 张翰墨,尤红建.基于梯度结构的星载红外图像和全色图像配准方法[J].红外与毫米波学报,2013,32(3):270-276.
Zhang H M,You H J.A gradient structure based registration method for space-borne infrared image and panchromatic image[J].Journal of Infrared and Millimeter Waves,2013,32(3):270-276.
[9] 张剑清.基于特征的最小二乘匹配理论精度[J].武汉测绘科技大学学报,1988,13(4):82-90.
Zhang J Q.On the theoretic precision of least squares matching based on features[J].Journal of Wuhan Technical University of Surveying and Mapping,1988,13(4):82-90.
[10] 黄世存,吴海平,王 奇,等.“高分一号”卫星PMS图像几何定位精度验证[J].航天返回与遥感,2014,35(5):81-87.
Huang S C,Wu H P,Wang Q,et al.Validation of positioning accuracy of GF-1 PMS images[J].Spacecraft Recovery and Remote Sensing,2014,35(5):81-87.
[11] 王 密,杨 博,金淑英.一种利用物方定位一致性的多光谱卫星影像自动精确配准方法[J].武汉大学学报(信息科学版),2013,38(7):765-769.
Wang M,Yang B,Jin S Y.A registration method based on object-space positioning consistency for satellite multi-spectral image[J].Geomatics and information science of Wuhan University,2013,38(7):765-769.
[12] 简剑锋,林 怡,周利华,等.一种优化的多源遥感影像高精度配准方法[J].同济大学学报(自然科学版),2008,36(10):1427-1432.
Jian J F,Lin Y,Zhou L H,et al.Optimized high-precision registration method of multi-source remote sensing images[J].Journal of Tongji University(Natural Science),2008,36(10):1427-1432.
[13] 孙义威,刘 斌,邸凯昌,等.基于参考图像的行星遥感图像自动几何精纠正[J].国土资源遥感,2015,27(1):23-28.doi:10.6046/gtzyyg.2015.01.04.
Sun Y W,Liu B,Di K C,et al.Automatic accurate geo-rectification of planetary remote sensing image based on reference image[J].Remote Sensing for Land and Resources,2015,27(1):23-28.doi:10.6046/gtzyyg.2015.01.04.
[14] 张 谦,贾永红,胡忠文.多源遥感影像配准中的SIFT特征匹配改进[J].武汉大学学报(信息科学版),2013,38(4):455-459.
Zhang Q,Jia Y H,Hu Z W.An improved SIFT algorithm for multi-source remote sensing image registration[J].Geomatics and information science of Wuhan University,2013,38(4):455-459.

[1] Dongsheng XIAO, Song YANG. A review of population spatial distribution based on nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 10-19.
[2] Liyan REN, Yingcheng LI, Yanli XUE, Xiaobo DING, Hao WU. Development and application of the UAV flying supervisory system based on Beidou technology[J]. Remote Sensing for Land & Resources, 2018, 30(2): 238-242.
[3] XUE Wu, MA Yongzheng, ZHAO Ling, MO Delin. UAV-based rural homestead ownership determination[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 124-127.
[4] LU Heng, FU Xiao, LIU Chao, GUO Jiawei, GOU Si, LIU Tiegang. Study of method for fast segmentation based on UAV image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 72-78.
[5] DING Leilong, LI Qiangzi, DU Xin, TIAN Yichen, YUAN Chao. Vegetation extraction method based on color indices from UAV images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 78-86.
[6] XU Zhenliang, LI Yanhuan, YAN Li, YAN Lei. PCG sparse algorithm for close-range block bundle adjustment[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 44-47.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech