Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 147-153     DOI: 10.6046/gtzyyg.2018.02.20
|
Lunar mineral mapping in Sinus Iridum in consideration of mineral grain sizes
Xiaoying DONG1(), Weihua LIN1(), Fujiang LIU1, Qi ZHANG1, Yuan CHANG2
1. Department of Information Engineering, China University of Geosciences(Wuhan), Wuhan 430074, China
2. Jilin Provincial Communication Planning and Design Institute, Changchun 130021, China
Download: PDF(3209 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The distribution of the mineral abundances on lunar surface has a significant meaning. Hapke model is one of the most usually used methods for studying lunar surface, and particle size is one of the parameters that must be clearly understood in doing model calculation. Nevertheless, the research on grain size remains very insufficient. To study the distribution of the abundances of five main minerals, i.e., clinopyroxene, orthopyroxene, plagioclase, olivine and ilmenite, the authors considered the influence of grain size and built inverse models of these five minerals by using fully constrained linear-unmixing method with Relab data based on Hapke radioative transfer model, with the correlation coefficients of these five minerals being 0.98, 0.98, 0.83, 0.91 and 0.50. Furthermore, the accuracy of this models was verified by using data of Apollo sampling points . At last, the lunar minerals abundance distribution maps of Sinus Iridum were compiled by applying the models to the M 3 hyperspectral data,which shows that the fully constrained linear-unmixing method in consideration of mineral grain sizes can be used to study lunar mineral abundance distribution.

Keywords Sinus Iridum      mineral grain size      full constrained linear-unmixing      M 3     
:  P691  
Corresponding Authors: Weihua LIN     E-mail: 963339577@qq.com;22384138@qq.com
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoying DONG
Weihua LIN
Fujiang LIU
Qi ZHANG
Yuan CHANG
Cite this article:   
Xiaoying DONG,Weihua LIN,Fujiang LIU, et al. Lunar mineral mapping in Sinus Iridum in consideration of mineral grain sizes[J]. Remote Sensing for Land & Resources, 2018, 30(2): 147-153.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.20     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/147
成像
模式
视场
/km
光谱范
围/nm
采样间
隔/nm
空间分
辨率/m
波段
数/个
光谱分
辨率/nm
target 40 430~3 000 10 70 261 10
global 40 430~3 000 10 140 85 20/40
Tab.1  Main technical and performance indicates of M3
矿物类别 样本编号 光谱范围 DU DL <D>
单斜辉石 LS-CMP-009 350~2 600 250 5 20
斜方辉石 LS-CMP-012 350~2 600 250 5 20
斜长石 LS-CMP-011 350~2 600 500 5 23
橄榄石 LR-CMP-014 300~2 600 45 5 11
钛铁矿 PI-CMP-006 300~2 600 75 5 14
Tab.2  Optical constant information of endmember mineralsin Relab spectral library (nm)
Fig.1  Statistical relations between the unmixing abundance and the real abundance of different endmember minerals
样品编号 实测结果 反演结果
辉石 斜长石 橄榄石 钛铁矿 熔融玻璃 辉石 斜长石 橄榄石 钛铁矿
12030 21.4 14.0 3.7 3.2 49.8 15.7 62.8 11.2 13.3
15071 16.7 19.4 2.8 1.8 49.2 13.0 64.5 11.0 13.2
71501 13.7 19.8 3.4 9.7 44.8 9.8 66.6 11.1 22.1
67461 4.1 61.0 1.5 0.3 32.4 3.3 98.8 8.3 7.0
14141 10.9 28.0 1.6 1.1 48.6 8.9 79.2 9.5 10.3
14163 13.8 18.3 2.1 0.9 58.5 9.1 81.2 7.2 13.3
Tab.3  Comparison between the inversed abundance and the measured abundance of different endmember minerals in Apollo(%)
Fig.2  Statistical relations between the inversed abundance and the measured abundance of different endmember minerals in Apollo
Fig.3  Process flowchart of M3 data
Fig.4  Mineral abundance distribution in Sinus Iridum
[1] Li L, Lucey P G. Use of multiple endmember spectral mixture analysis and radiative transfer model to derive lunar mineral abundance maps [C]//Proceedings of 40th Lunar and Planetary Science Conference.Woodlands:Lunar and Planetary Science, 2009.
[2] Pieters C M, Boardman J, Buratti B , et al. The moon mineralogy mapper(M 3)on Chandrayaan-1 [J]. Current Science, 2009,96(4):500-505.
doi: 10.1371/journal.pone.0004525 url: http://www.researchgate.net/publication/237479913_The_Moon_Mineralogy_Mapper_(M3)_on_Chandrayaan-1
[3] 李二森 . 高光谱遥感图像混合像元分解的理论与算法研究[D]. 郑州:解放军信息工程大学, 2011.
[3] Li E S . Research on Theory and Algorithms of Mixed Pixel Decomposition for Hyperspectral Remote Sensing Image[D]. Zhengzhou:PLA Information Engineering University, 2011.
[4] Keshava N, Mustard J F . Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002,19(1):44-57.
doi: 10.1109/79.974727 url: http://ieeexplore.ieee.org/document/974727/
[5] Johnson P E, Smith M O, Taylor-George S , et al. A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures[J]. Journal of Geophysical Research, 1983,88(B4):3557-3561.
doi: 10.1029/JB088iB04p03557 url: http://doi.wiley.com/10.1029/JB088iB04p03557
[6] Mustard J F, Pieters C M . Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[J]. Journal of Geophysical Research, 1989,94(B10):13619-13634.
doi: 10.1029/JB094iB10p13619 url: http://doi.wiley.com/10.1029/JB094iB10p13619
[7] 闫柏琨, 甘甫平, 王润生 , 等. 基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图[J]. 国土资源遥感, 2009,21(4):19-24.doi: 10.6046/gtzyyg.2009.04.04.
doi: 10.6046/gtzyyg.2009.04.04 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg200904004
[7] Yan B K, Gan F P, Wang R S , et al. Mineral mapping of the lunar surface using Clementine UV/VIS/NIR data based on unmixing of spectral[J]. Remote Sensing for Land and Resources, 2009,21(4):19-24.doi: 10.6046/gtzyyg.2009.04.04.
[8] Yan B K, Wang R S, Gan F P , et al. Minerals mapping of the lunar surface with Clementine UVVIS/NIR data based on spectra unmixing method and Hapke model[J]. Icarus, 2010,208(1):11-19.
doi: 10.1016/j.icarus.2010.01.030 url: http://linkinghub.elsevier.com/retrieve/pii/S0019103510000497
[9] Combe J P, McCord T B, Hayne P O , et al.Mapping of lunar volatiles with moon mineralogy mapper spectra:A challenge due to thermal emission[C]//EPSC-DPS Joint Meeting 2011.Nantes,France:COPERNICUS, 2011.
[10] Li S, Li L . Radiative transfer modeling for quantifying lunar surface minerals,particle size,and submicroscopic metallic Fe[J]. Journal of Geophysical Research, 2011,116(E9):E09001.
doi: 10.1029/2011JE003837 url: http://onlinelibrary.wiley.com/doi/10.1029/2011JE003837/full
[11] Nelson M L, Clark R N. Comparison of different measures of the grain size in Hapke modeling [C]//Bulletin of the American Astronomical Society, 1990,22:1033.
[12] 张渊智, 安璐, 黄朝君 . 基于太空风化的尖晶石二向性反射特性研究[J]. 深空探测学报, 2014,1(3):210-213.
doi: 10.15982/j.issn.2095-7777.2014.03.008 url: http://www.cqvip.com/QK/71905X/201403/664322566.html
[12] Zhang Y Z, An L, Huang Z J . The study of bidirectional reflectance feature of the spinel based on the space weathering[J]. Journal of Deep Space Exploration, 2014,1(3):210-213.
[13] 吴昀昭, 郑永春, 邹永廖 , 等. 基于非线性混合模型研究太空风化对月壤光谱的影响[J]. 空间科学学报, 2010,30(2):154-159.
url: http://www.cqvip.com/QK/71135X/201107/33329812.html
[13] Wu Y Z, Zheng Y C, Zou Y L , et al. Research of the optical effects of space weathering on lunar regolith based on the nonlinear mixing model[J]. Chinese Journal of Space Science, 2010,30(2):154-159.
[14] 欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005: 38.
[14] Ouyang Z Y. Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005: 38.
[15] 路鹏, 陈圣波, 崔腾飞 , 等. 月球表面矿物二向性反射特性实验研究[J]. 岩石学报, 2016,32(1):107-112.
url: http://www.cqvip.com/QK/94579X/201601/667827543.html
[15] Lu P, Chen S B, Cui T F , et al. Experimental study on bidirectional reflectance characteristics of minerals on lunar surface[J]. Acta Petrologica Sinica, 2016,32(1):107-112.
[16] 崔腾飞 . 月表矿物二向性反射模型研究[D]. 长春:吉林大学, 2012.
[16] Cui T F . Study on Bidirectional Reflectance Model of Minerals on Lunar Surface[D]. Changchun:Jilin University, 2012.
[17] Hapke B. Theory of Reflectance and Emittance Spectroscopy[M]. New York: Cambridge University Press, 1993.
[18] Hapke B . Space weathering from Mercury to the asteroid belt[J]. Journal of Geophysical Research, 2001,106(E5):10039-10073.
doi: 10.1029/2000JE001338 url: http://doi.wiley.com/10.1029/2000JE001338
[19] 闫柏琨, 李建忠, 甘甫平 , 等. 一种月壤主要矿物组分含量反演的光谱解混方法[J]. 光谱学与光谱分析, 2012,32(12):3335-3340.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ130114000153nTpWsZ
[19] Yan B K, Li J Z, Gan F P , et al. A spectral unmixing method of estimating main minerals abundance of lunar soils[J]. Spectroscopy and Spectral Analysis, 2012,32(12):3335-3340.
[20] Heinz D C, Chang C I . Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(3):529-545.
doi: 10.1109/36.911111 url: http://ieeexplore.ieee.org/document/911111/
[21] 燕守勋, 张兵, 赵永超 , 等. 高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J]. 遥感技术与应用, 2004,19(1):52-63.
[21] Yan S X, Zhang B, Zhao Y C , et al. Summarizing the technical flow and main approaches for discrimination and mapping of rocks and minerals using hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2004,19(1):52-63.
[22] 王振超 . 月壤光谱特性分析与月表矿物信息定量反演[D].北京:中国地质大学(北京), 2011.
[22] Wang Z C . Analysis of Spectral Characteristics of Lunar Soil and Quantitative Inversion of Minerals Information[D].Beijing: China University of Geoscience(Beijing), 2011.
[23] 张琪, 刘福江, 李婵 , 等. 全约束线性分解的月表虹湾地区矿物含量反演[J]. 国土资源遥感, 2016,28(1):7-14.doi: 10.6046/gtzyyg.2016.01.02.
doi: 10.6046/gtzyyg.2016.01.02 url: http://www.cqvip.com/QK/91397X/201601/668153351.html
[23] Zhang Q, Liu F J, Li C , et al. Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum[J]. Remote Sensing for Land and Resources, 2016,28(1):7-14.doi: 10.6046/gtzyyg.2016.01.02.
[24] Lucey P G . Mineral maps of the Moon[J]. Geophysical Research Letters, 2004,31(8):L08701.
doi: 10.1029/2003GL019406 url: http://onlinelibrary.wiley.com/doi/10.1029/2003GL019406/full
[25] 薛彬, 杨建峰, 赵葆常 . 月球表面主要矿物反射光谱特性研究[J]. 地球物理学进展, 2004,19(3):717-720.
doi: 10.3969/j.issn.1004-2903.2004.03.037 url: http://d.wanfangdata.com.cn/Periodical/dqwlxjz200403037
[25] Xue B, Yang J F, Zhao B C . The study of spectral feature of major minerals on the lunar surface[J]. Progress in Geophysics, 2004,19(3):717-720.
[26] 李婵, 刘福江, 郑小坡 , 等. 月表虹湾地区辉石及橄榄石含量反演[J]. 中国科学(物理学力学天文学), 2013,43(11):1387-1394.
[26] Li C, Liu F J, Zheng X P , et al. Lunar pyroxene and olivine abundance analysis of Sinus Iridum[J]. Science China Physics,Mechanics and Astronomy, 2013,43(11):1387-1394.
[27] Staid M I, Pieters C M . Mineralogy of the last lunar basalts:Results from Clementine[J]. Journal of Geophysical Research, 2001,106(E11):27887-27900.
doi: 10.1029/2000JE001387 url: http://doi.wiley.com/10.1029/2000JE001387
[28] 付晓辉, 邹永廖, 郑永春 , 等. 月球表面太空风化作用及其效应[J]. 空间科学学报, 2011,31(6):705-715.
[28] Fu X H, Zou Y L, Zheng Y C , et al. Space weathering processes and effects on the Moon[J]. Chinese Journal of Space Science, 2011,31(6):705-715.
[29] 王景然 . 基于地形校正月表矿物含量反演研究[D]. 长春:吉林大学, 2012.
[29] Wang J R . Topographic Correction Based Retrieval of Lunar Mineral Abundance[D]. Changchun:Jilin University, 2012.
[1] ZHANG Qi, LIU Fujiang, LI Chan, QIAO Le, GUO Zhenhui, CHAI Chunpeng. Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 7-14.
[2] XI Xiao-xu, LIU Shao-feng, WU Zhi-yuan, WEI Wei, JIAO Zhong-hu, LI Li. The Interpretation of the Land Form of Sinus Iridum on the Moon Based on the Roughness[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 95-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech