Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 7-14     DOI: 10.6046/gtzyyg.2016.01.02
Technology and Methodology |
Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum
ZHANG Qi1, LIU Fujiang1, LI Chan2, QIAO Le3, GUO Zhenhui1, CHAI Chunpeng1
1. Department of Remote Sensing Science and Technology, China University of Geosciences(Wuhan), Wuhan 430074, China;
2. Xinjiang Academy of Surveying and Mapping, Urumqi 830002, China;
3. Institute of Planetary Science, China University of Geosciences(Wuhan), Wuhan 430074, China
Download: PDF(13131 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Quantitative inversion of the main lunar mineral abundance is an important issue in the field of lunar science, which has great guiding effect on lunar mineral information interpretation in the future. In this paper, a method of linear unmixing for hyperspectral remote sensing image is proposed to obtain the mineral abundance. Firstly, based on Hapke radiative transfer model, the authors transformed the non-linear mixed reflectance spectra into the linear mixed single scattering albedo of five end-member minerals (clinopyroxene, orthopyroxene, plagioclase, olivine and ilmenite) in the Relab spectral library, and then generated mixed pixels according to the linear proportion randomly; in this way, the statistical relationship models of mineral unmixing abundance and real abundance for the above five minerals can be established respectively based on fully constrained linear-unmixing method. The verification result with the data measured by Apollo sampling points indicates that the correlation coefficient between mineral abundances inversed and measured in Apollo of pyroxene, plagioclase, olivine and ilmenite are 0.83, 0.86, 0.72 and 0.77 respectively. With this method, the authors acquired the lunar mineral abundance distribution maps in Sinus Iridum using Chandrayaan-1 M3 hyperspectral data, which shows that the fully constrained linear-unmixing method is a kind of effective approach to mineral identification and inversion with hyperspectral data.

Keywords initial stage of exploitation      land use change      remote sensing monitoring     
:  TP751.1  
  P577  
Issue Date: 27 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Peng
Cite this article:   
ZHAO Peng. Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 7-14.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.01.02     OR     https://www.gtzyyg.com/EN/Y2016/V28/I1/7

[1] Kumar K A S,Chowdhury A R,Banerjee A,et al.Hyper spectral imager for lunar mineral mapping in visible and near infrared band[J].Current Science,2009,96(4):496-499.

[2] Isaacson P J,Basu S A,Pieters C M,et al.The lunar rock and mineral characterization consortium:Deconstruction and integrated mineralogical,petrologic,and spectroscopic analyses of mare basalts[J].Meteoritics & Planetary Science,2011,46(2):228-251.

[3] Pieters C M,Boardman J,Buratti B,et al.The moon mineralogy mapper(M3) on Chandrayaan-1[J].Current Science,2009,96(4):500-505.

[4] 田丰.全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D].北京:中国地质大学(北京),2010. Tian F.Identification and Quantitative Retrival of Minerals Information Integrating VIS-NIR-MIR-TIR(0.35~25μm) Hyspectral Data[D].Beijing:China University of Geoscience(Beijing),2010.

[5] Heiken G,Vaniman D,French B M.Lunar Source Book:A User's Guide to the Moon[M].Cambridge:Cambridge University Press,1991.

[6] Taylor L A,Pieters C M,Keller L P,et al.Lunar mare soils:Space weathering and the major effects of surface-correlated nanophase Fe[J].Journal of Geoscience Research,2001,106(E11):27985-27999.

[7] Lucey P G.Quantitative mineralogic and elemental abundance from spectroscopy of the moon:Status,prospects,limits,and a plea[C]//Workshop on New Views of the Moon:Integrated Remotely Sensed,Geophysical,and Sample Datasets.1998,1:53-54.

[8] Lucey P G.Mineral maps of the Moon[J].Geophysical Research Letters,2004,31(8),:L08701.

[9] Liu F J,Yang R,Zhang Y,et al.Distribution of olivine and pyroxene derived from Clementine data in crater Copernicus[J].Journal of Earth Science,2011,22(5):586-594.

[10] Li L,Lucey P G.Use of multiple end member spectral mixture analysis and radiative transfer model to derive lunar mineral abundance maps[C]//Proceedings of 40th Lunar and Planetary Science Conference.Woodlands:Lunar Planet Science,2009.

[11] 闫柏琨,甘甫平,王润生,等.基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图[J].国土资源遥感,2009,21(4):19-24.doi:10.6064/gtzyyg.2009.04.04. Yan B K,Gan F P,Wang R S,et al.Mineral mapping of the lunar surface using Clementine UV/VIS/NIR data based on spectra unmixing of spectral[J].Remote Sensing for Land and Resources,2009,21(4):19-24.doi:10.6064/gtzyyg.2009.04.04.

[12] Yan B K,Wang R S,Gan F P,et al.Minerals mapping of the lunar surface with Clementine UVVIS/NIR data based on spectra unmixing method and Hapke model[J].Elsevier Icarus,2010,208(1):11-19.

[13] Johnson P E,Smith M O,Taylor-George S,et al.A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures[J].Journal of Geoscience Research:Solid Earth(1978-2012),1983,88(B4):3557-3561.

[14] Combe J P,McCord T B,Kramer G Y,et al.Mixing of surface materials investigated by spectral mixture analysis with the moon mineralogy mapper[C]//Proceedings of EGU General Assembly Conference.Vienna,Austria:EGU,2010.

[15] 吴昀昭,郑永春,邹永廖,等.嫦娥一号IIM数据处理分析与应用之一:全月表矿物吸收中心分布图[J].中国科学:物理学力学天文学,2010,40(11):1343-1362. Wu J Z,Zheng Y C,Zou Y L,et al.Processing analysis and one of the applications from Chang'E-1 IIM data:Mapping global lunar mineral absorption center distribution[J].Scientia Sinica:Physics,Mechanics and Astronomica,2010,40(11):1343-1362.

[16] 崔腾飞.月表矿物二向性反射模型研究[D].长春:吉林大学,2012. Cui T F.Study on Bidirectional Reflectance Model of Minerals on Lunar Surface[D].Changchun:Jilin University,2012.

[17] 李婵,刘福江,郑小坡,等.月表虹湾地区辉石及橄榄石含量反演[J]. 中国科学:物理学力学天文学,2013,43(11):1387-1394. Li C,Liu F J,Zheng X P,et al.Lunar pyroxene and olivine abundance analysis of Sinus Iridum[J].Scientia Sinica:Physics,Mechanics and Astronomyica,2013,43(11):1387-1394.

[18] 燕守勋,张兵,赵永超,等.高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J].遥感技术与应用,2004,19(1):52-63. Yan S X,Zhang B,Zhao Y C,et al.Summarizing the technical flow and main approaches for discrimination and mapping of rocks and minerals using hyperspectral remote sensing[J].Remote Sensing Technology Application,2004,19(1):52-63.

[19] 王振超.月壤光谱特性分析与月表矿物信息定量反演[D].北京:中国地质大学(北京),2011. Wang Z C.Analysis of Spectral Characteristics of Lunar Soil and Quantitative Inversion of Minerals Information[D].Beijing:China University of Geoscience(Beijing),2011.

[20] Mustand J F,Pieters C M.Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[J].Journal of Geoscience Research,1989,94(B10):13619-13634.

[21] Hapke B.Theory of Reflectance and Emittance Spectroscopy[M].New York:Cambridge University Press,1993.

[22] Hapke B.Space weathering from mercury to the Aasteroid belt[J].Journal of Geophysical Research,2001,106(E5):10039-10073.

[23] 闫柏琨,李建忠,甘甫平,等.一种月壤主要矿物组分含量反演的光谱解混方法[J].光谱学与光谱分析,2012,32(12):3335-3340. Yan B K,Li J Z,Gan F P,et al.A spectral unmixing method of estimating main minerals abundance of lunar soils[J].Spectroscopy and Spectral Analysis,2012,32(12):3335-3340.

[24] Clark R N,Roush T L.Reflectance sepectroscopy:Quantitative analysis techniques for remote sensing applications[J].Journal of Geophysical Research,1984,89(B7):6329-6340.

[25] Pope P A,Greene M K.Geologic mapping through linear spectral unmixing of MTI imagery[C]//Pecora 16 "Global Priorities in Land Remote Sensing",Sioux Falls,2005.

[26] Heinz D C,Chang C.Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):529-545.

[27] Keshava N,Mustard J F.Spectral unmixing[J].IEEE Signal Processing Magazine,2002,19(1):44-57.

[28] 李二森.高光谱遥感图像混合像元分解的理论与算法研究[D].郑州:解放军信息工程大学,2011. Li E S.Research on Theory and Algorithms of Mixed Pixel Decomposition for Hyperspectral Remote Sensing Image[D].Zhengzhou:PLA Information Engineering University,2011.

[29] 薛彬,杨建峰,赵葆常.月球表面主要矿物反射光谱特性研究[J].地球物理学进展,2004,19(3):717-720. Xue B,Yang J F,Zhao B C.The study of spectral feature of major minerals on the lunar surface[J].Progress in Geophysics,2004,19(3):717-720.

[1] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[2] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[3] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[4] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[5] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[6] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[7] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[8] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[9] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
[10] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[11] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[12] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
[13] Yu ZHANG, Xiaoli ZHAO, Lijun ZUO, Zengxiang ZHANG, Jinyong XU. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(3): 132-139.
[14] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[15] Xianhua YANG, Jie HUANG, Li TIAN, Bei PENG, Lixiao XIAO, Xinlong SONG. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land & Resources, 2018, 30(3): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech