Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 164-170     DOI: 10.6046/gtzyyg.2019.01.22
|
The evaluation of latest GPM-Era precipitation data in Yellow River Basin
Yuanyuan LI1,2, Shaowei NING2(), Wei DING1, Juliang JIN2, Zheng ZHANG1
1.School of Hydraulic Engineering Dalian University of Technology, Dalian 116023, China
2.School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
Download: PDF(5156 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on the data from the rain gauge stations of the Yellow River Basin and using the evaluation index, extreme precipitation index and error analysis method, the authors studied the spatial and temporal variation characteristics of errors and the accuracy of data of two GPM satellite precipitation products (GSMap-gauged and GPM IMERG) obtained from April 2014 to March 2016 and analyzed the extreme precipitation capturing capability of the two products. The results showed that the two products generally underestimated precipitation in the western region of the basin and overestimated precipitation in the eastern part. Compared with GSMap-gauged, IMERG had bigger errors in most areas. In addition, the phenomenon of missing error in IMERG was more obvious due to elevation and precipitation intensity, but IMERG had a more accurate data for micro-precipitation. The daily scale data statistics showed that GSMap-gauged had a better relevance in each sub-basin, and its mean error is smaller. The correlation coefficient value of extreme precipitation index obtained by GSMap-gauged was higher than that of IMERG.

Keywords satellite precipitation products      gauge      error     
:  TV125  
Corresponding Authors: Shaowei NING     E-mail: ning@hfut.edu.cn
Issue Date: 14 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuanyuan LI
Shaowei NING
Wei DING
Juliang JIN
Zheng ZHANG
Cite this article:   
Yuanyuan LI,Shaowei NING,Wei DING, et al. The evaluation of latest GPM-Era precipitation data in Yellow River Basin[J]. Remote Sensing for Land & Resources, 2019, 31(1): 164-170.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.22     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/164
Fig.1  Map of study area
产品 空间分辨率/(°) 时间分辨率/h 覆盖范围 发布时间 延迟时间 提供者
GPM IMERG(v,4) 0.1 0.5 N60°S60° 2014年3月 24个月 NASA
GSMap-gauged(v,6) 0.1 1 N60°S60° 2014年3月 12 d JAXA
Tab.1  Main performance parameters of the two latest satellite precipitation products
指数 定义 单位
RR99p 日降水量>99%分位值的日降水数据 mm/d
RR95p 日降水量>95%分位值的日降水数据 mm/d
R20 日降水量超过20 mm的天数 d
R20TOT 日降水量超过20 mm的累计降水量 mm
CWD 最长连续降水量大于1 mm天数 d
CDD 最长连续降水量小于1 mm天数 d
Tab.2  Extreme precipitation index table
Fig.2  Annual mean error distribution of two precipitation products in the Yellow River Basin
Fig.3  Variation of the error components for both satellite products by elevation
Fig.4  Frequency distributions of the total precipitation as well as the hit, missed and false precipitation
Fig.5  Spatial distributions of CC and ME at the daily scale
Fig.6  Spatial distributions of CC and ME at the monthly scale
Fig.7  Monthly precipitation data CC and RMSE values
Fig.8  Density-colored scatterplots of six extreme precipitation indices
[1] Tang G Q, Ma Y Z, Long D , et al. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales[J]. Journal of Hydrology, 2016,533:152-167.
doi: 10.1016/j.jhydrol.2015.12.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169415009476
[2] Buarque D C, De Paiva R C D, Clarke R T . A comparison of Amazon rainfall characteristics derived from TRMM,CMORPH and the Brazilian national rain gauge network[J]. Journal of Geophysical Research Atmospheres, 2011,116:D19.
doi: 10.1029/2011JD016060 url: http://onlinelibrary.wiley.com/doi/10.1029/2011JD016060/pdf
[3] Germann U, Galli G, Boscacci M , et al. Radar precipitation measurement in a mountainous region[J]. Quarterly Journal of the Royal Meteorological Society, 2006,132(618):1669-1692.
doi: 10.1256/qj.05.190 url: http://doi.wiley.com/10.1256/qj.05.190
[4] Dinku T, Anagnostou E N, Borga M . Improving Radar-based estimation of rainfall over complex terrain.[J]. Journal of Applied Meteorology, 2007,41(12):1163-1178.
doi: 10.1175/1520-0450(2002)0412.0.CO;2 url: http://adsabs.harvard.edu/abs/2002JApMe..41.1163D
[5] 嵇涛, 杨华, 刘睿 , 等. TRMM卫星降水数据在川渝地区的适用性分析[J]. 地理科学进展, 2014,33(10):1375-1386.
doi: 10.11820/dlkxjz.2014.10.009 url: http://d.wanfangdata.com.cn/Periodical/dlkxjz201410009
[5] Ji T, Yang H, Liu R , et al. Applicability analysis of the TRMM precipitation data in the Sichuan-Chongqing region[J]. Progress in Geography, 2014,33(10):1375-1386.
[6] Hong Y, Chen S, Xue X W , et al. Global precipitation estimation and applications[J]. Multiscale Hydrologic Remote Sensing, 2012: 371-386.
[7] Hou A Y, Kakar R, Neeck S , et al. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2014,95(5):701-722.
doi: 10.1175/bams-d-13-00164.1 url: http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-13-00164.1
[8] Ning S W, Wang J, Jin J L , et al. Assessment of the latest GPM-Era high-resolution satellite precipitation products by comparison with observation gauge data over the Chinese mainland[J]. Water, 2016,8(11):481-497.
doi: 10.3390/w8110481 url: http://www.mdpi.com/2073-4441/8/11/481
[9] 唐国强, 万玮, 曾子悦 , 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015,30(4):607-615.
doi: 10.11873/j.issn.1004-0323.2015.4.0607 url: http://www.cnki.com.cn/Article/CJFDTotal-YGJS201504001.htm
[9] Tang G Q, Wan W, Zeng Z Y , et al. An overview of the global precipitation measurement (GPM) mission and it's latest development[J]. Remote Sensing Technology and Application, 2015,30(4):607-615.
[10] 孙永军 . 黄河流域湿地遥感动态监测研究[D]. 北京:北京大学, 2008.
[10] Sun Y J . Study of Remote Sensing Monitoring of Wetland Dynamic Change in Yellow River Drainage Area[D]. Beijing:Peking University, 2008.
[11] Guo H, Chen S, Bao A M , et al. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China[J].Atmospheric Research, 2016, 176-177(1):121-133.
doi: 10.1016/j.atmosres.2016.02.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0169809516300370
[12] Shen Y, Xiong A Y . Validation and comparison of a new gauge-based precipitation analysis over mainland China[J]. International Journal of Climatology, 2015,36(1):252-265.
doi: 10.1002/joc.4341 url: http://onlinelibrary.wiley.com/doi/10.1002/joc.4341/pdf
[13] Ning S W, Song F, Udmale P , et al. Error analysis and evaluation of the latest GSMap and IMERG precipitation product over eastern China[J]. Advances in Meteorology, 2017(11):1-16.
[14] Ushio T, Sasashige K, Kubota T , et al. A Kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data[J]. Journal of the Meteorological Society of Japan, 2009,87A(3):137-151.
doi: 10.2151/jmsj.87A.137 url: http://joi.jlc.jst.go.jp/JST.JSTAGE/jmsj/87A.137?from=CrossRef
[15] Xie P P, Yatagai A, Chen M Y , et al. A Gauge-based analysis of daily precipitation over East Asia[J]. Journal of Hydrometeorology, 2007,8(3):607-626.
doi: 10.1175/JHM583.1 url: http://journals.ametsoc.org/doi/abs/10.1175/JHM583.1
[16] Tian Y D , Peters-Lidard C D, Eylander J B, et al. Component analysis of errors in satellite-basd precipitation estimates[J]. Journal of Geophysical Research Atmospheres, 2009,114(2):137-144.
doi: 10.1029/2009JD011949 url: http://onlinelibrary.wiley.com/doi/10.1029/2009JD011949/full
[1] Jie HAN, Zui TAO, Huina LI, Baoliang MIAO, Hongbin SHI, Qiyue LIU. Geo-positioning accuracy analysis of GF-4 satellite imagery[J]. Remote Sensing for Land & Resources, 2019, 31(3): 104-110.
[2] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[3] Hongli SONG, Xiaonan ZHANG. Precision validation of multi-sources land cover products derived from remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 26-32.
[4] Kai WU, Hong SHU, Lei NIE, Zhenhang JIAO. Error analysis of soil moisture based on Triple Collocation method[J]. Remote Sensing for Land & Resources, 2018, 30(3): 68-75.
[5] CHEN Jie, XIAO Chunlei, LI Jing. Calibration of airborne LiDAR cloud point data with no calibration field[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 27-33.
[6] LI Zheng, LI Yongshu, CHU Bin, TANG Min. UAV image registration based on the weighted total-least-squares[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 69-73.
[7] XIONG Pan, ZHU Li, GU Xingfa, ZHAO Limin, YU Tao, MENG Qingyan, LI Jiaguo, ZHANG Feng. Sea water temperature retrieval model for Daya Bay based on HJ-1B thermal infrared remote sensing data and its application[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 132-138.
[8] HAN Jie, GU Xingfa, YU Tao, XIE Yong, ZHENG Fengjie, ZHANG Feng. Block adjustment for ZY-3 satellite images based on RFM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 64-71.
[9] CHEN Jun, FU Jun, SUN Ji-Hong. The Application of the Numerical Method to Simulating the Impact of the Observation Errors on the Parameters of the Water Quality Retrieval Model: a Case Study of Chloroplyll-a Concentration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 57-61.
[10] CHEN Feng, XIONG Yong-Zhu, HUANG Shao-Peng, YE Hong. Spatial Heterogeneity of Atmospheric Water Vapor and Its Influence on the
Retrieval of Land Surface Temperature Based on Remote Sensing Data
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 35-40.
[11] AI Bin, LI Xia. AN ANALYSIS OF DIFFERENT INSAR FLATTENING ALGORITHMS
AND THEIR INFLUENCE ON DEM ACCURACY
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(3): 12-18.
[12] QIN Fu-Lai, WANG Xiao-Yan, DOU Pei-Qian, WANG Li-Hua. AN ANALYSIS OF THE WATERSHED TERRAIN FEATURES
DERIVED FROM DEMS WITH DIFFERENT PRECISION
AND A STUDY OF THE SLOPE ERROR CONTROL
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 56-59.
[13] HUANG Shi-Cun, ZHANG Wen-Yi, HE Guo-Jin, ZHENG Wan-Qin, WU Hai-Ping. A COMPARISON OF REMOTE SENSING IMAGE RECTIFICATION
EFFECTS BASED ON SEVERAL MATRIX ALGORITHMS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(3): 18-22.
[14] ZHOU Xiao-Hu, SUN Shun-Xin . ERROR ANALYSE OF THE SINGLE FREQUENCY GPS RECEIVER IN LAND AND RESOURCES INVESTIGATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(2): 61-63,67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech