Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 26-32     DOI: 10.6046/gtzyyg.2018.03.04
|
Precision validation of multi-sources land cover products derived from remote sensing
Hongli SONG1,2, Xiaonan ZHANG3()
1. School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China
2. Heibei Collaborative Innovation Center of the Comprehensive Development and Utilization of Coal Resource, Handan 056038, China
3. School of mining and surveying engineering, Hebei University of Engineering, Handan 056038, China
Download: PDF(2814 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Global land cover maps (GLC) are essential input data for many scientific studies, so assessment of their category accuracy and category confusion is very important for some specific applications. In this paper, the authors chose China as the study region and FROM, MODIS, GLOBCOVER and ESACCI as land cover data for validation. The authors first aggregated the four GLC and referenced data provided by some international organizations into eight categories, and then validated four products through the category consistency and confusion matrix in national scale. The relative comparison between FROM, MODIS, ESACCI and GLOBCOVER shows that the four land cover products have the similar category constituent. Forest, grassland, cropland and bare land are the major land cover categories, whereas shrub, build up and water/wetland are relatively rare. Through comparing one by one between referenced data and land cover products, the authors constructed the confusion matrix, and the validated results demonstrate that FROM and MODIS have the best overall agreement with referenced data at national scale; for example, FROM’s overall accuracy is 0.69, and MODIS is 0.67, and ESACCI’s overall value is 0.65. Conversely, GLOBCOVER has the worst overall accuracy, with the value being only 0.55. Forest, cropland, built up land and bare land all have the better category accuracy, so each of them would be as input data for national forest inventory, food security and urban expansion, but shrub's category accuracy is low in four global land cover products, with confusion mainly occurring with forest, grass and cropland . The study results not only provide some scientific reference for selecting the input data for ecological environment modeling, land cover change analysis, natural resource survey, but also provide a reasonable advice for the research direction in future land cover mapping projects.

Keywords national scale      land cover products      category confusion      error matrix      accuracy evaluation     
:  TP79  
Corresponding Authors: Xiaonan ZHANG     E-mail: 360217051@qq.com
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongli SONG
Xiaonan ZHANG
Cite this article:   
Hongli SONG,Xiaonan ZHANG. Precision validation of multi-sources land cover products derived from remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 26-32.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.04     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/26
土地覆被遥感产品 FROM ESACCI MODIS GLOBCOVER
空间分辨率/m 250 300 500 300
分类数据 Landsat TM/ETM+ MERIS地表放射率及
SPOT-VGI数据
每月的EVI,LST和1—7波段的8 d合成数据 MERIS 10 d合成数据
时间基点 2010年 2010年 2010年 2009年
分类方法 支持向量机和图像分割技术 时空聚类和机器学习分类 监督决策树分类 时空聚类及专家判读
Tab.1  Information illustration of land cover products
Fig.1  The spatial distribution of referenced data in China
土地覆被类别 FROM GLOBCOVER MODIS ESACCI GEOWIKI GLCNMO GLC2000
林地 20 40—110,160,170 1—5 50-100,160,170 1 1—5 1—10
灌木 40,71 130 6—9 120 2 7 11,12
草地 30,72 120,140 10 110,130,140 3 8,9 13
耕地 10 11—30 12,14 10—40 4 11,12,13 16—18
湿地水域 50,60 180,210 11,17 180,210 6,8 15 15,20
建设用地 80 190 13 190 7 - 22
冰雪 100 220 15 220 10 - 21
裸地 90 150,200 16 150,200 9 10,16,17 14,19
Tab.2  The corresponding table of aggregated land cover classes and original classes of the GLC datasets
类别代码 类别名称 验证点数目 所占比例/%
1 林地 537 18.12
2 灌木 171 5.77
3 草地 381 12.85
4 耕地 845 28.51
5 水域/湿地 29 0.98
6 城市及建设用地 692 23.35
7 永久性冰雪 257 8.67
8 裸地 52 1.75
Tab.3  The category percent of referenced data in China
Fig.2  Area consistent analysis of 4 land cover products
Fig.3  Comparison between different land cover products about producer accuracy and user accuracy
Fig.4  The spatial map of different land cover category consistencyin China
[1] 廖安平, 陈利军, 陈军 , 等. 全球陆表水体高分辨率遥感制图[J]. 中国科学(地球科学), 2014,44(8):1634-1645.
[1] Liao A P, Chen L J, Chen J , et al. High-resolution remote sensing mapping of global land water[J]. Science China(Earth Sciences), 2014,57(10):2305-2316.
[2] 陈军, 陈晋, 宫鹏 , 等. 全球地表覆盖高分辨率遥感制图[J]. 地理信息世界, 2011,9(2):12-14.
doi: 10.3969/j.issn.1672-1586.2011.02.002 url: http://d.wanfangdata.com.cn/Periodical/dlxxsj201102002
[2] Chen J, Chen J, Gong P , et al. Higher resolution global land cover mapping[J]. Geomatics World, 2011,9(2):12-14.
[3] LaFontaine J H, Hay L E, Viger R J , et al. Effects of climate and land cover on hydrology in the southeastern U.S.:Potential impacts on watershed planning[J]. Journal of the American Water Resources Association, 2015,51(5):1235-1261
doi: 10.1111/1752-1688.12304 url: http://doi.wiley.com/10.1111/1752-1688.12304
[4] Gagné S A, Eigenbrod F, Bert D G , et al. A simple landscape design framework for biodiversity conservation[J]. Landscape and Urban Planning, 2015,136:13-27.
doi: 10.1016/j.landurbplan.2014.11.006 url: http://linkinghub.elsevier.com/retrieve/pii/S0169204614002667
[5] Mantyka-Pringle C S, Visconti P, Di Marco M , et al. Climate change modifies risk of global biodiversity loss due to land-cover change[J]. Biological Conservation, 2015,187:103-111.
doi: 10.1016/j.biocon.2015.04.016 url: http://linkinghub.elsevier.com/retrieve/pii/S0006320715001615
[6] Gessesse B, Bewket W, Bräuning A . Model‐based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed,Ethiopia[J]. Land Degradation & Development, 2015,26(7):711-724.
[7] Loveland T R, Reed B C, Brown J F , et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data[J]. International Journal of Remote Sensing, 2000,21(6/7):1303-1330.
doi: 10.1080/014311600210191 url: http://www.tandfonline.com/doi/abs/10.1080/014311600210191
[8] Friedl M A , McIver D K,Hodges J C F,et al.Global land cover mapping from MODIS:Algorithms and early results[J]. Remote Sensing of Environment, 2002,83(1/2):287-302.
doi: 10.1016/S0034-4257(02)00078-0 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425702000780
[9] Hansen M C, Defries R S , Townshend J R G,et al.Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000,21(6/7):1331-1364.
doi: 10.1080/014311600210209 url: http://www.tandfonline.com/doi/abs/10.1080/014311600210209
[10] Bartholomé E, Belward A S . GLC2000:A new approach to global land cover mapping from Earth observation data[J]. International Journal of Remote Sensing, 2006,26(9):1959-1977.
doi: 10.1080/01431160412331291297 url: http://www.tandfonline.com/doi/full/10.1080/01431160412331291297
[11] Chen J, Chen J, Liao A P , et al. Global land cover mapping at 30 m resolution:A POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,103:7-27.
doi: 10.1016/j.isprsjprs.2014.09.002 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271614002275
[12] Yu L, Wang J, Gong P . Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets:A segmentation-based approach[J]. International Journal of Remote Sensing, 2013,34(16):5851-5867.
doi: 10.1080/01431161.2013.798055 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2013.798055
[13] Arino O, Bicheron P, Achard F , et al. GlobCover:The most detailed portrait of Earth[J]. European Space Agency Bulletin, 2008,136:24-31.
url: http://www.researchgate.net/publication/280017262_GLOBCOVER_the_most_detailed_portrait_of_Earth
[14] Tsendbazar N E, De Bruin S, Fritz S , et al. Spatial accuracy assessment and integration of global land cover datasets[J]. Remote Sensing, 2015,7(12):15804-15821.
doi: 10.3390/rs71215804 url: http://www.mdpi.com/2072-4292/7/12/15804
[15] Defourny P, Mayaux P, Herold M , et al. Global land-cover map validation experiences:Toward the characterization of quantitative uncertainty[M] //Chandra P G.Remote Sensing of Land Use and Land Cover: Principles and Applications.Engelska:CRC Press, 2012.
[16] Friedl M A, Sulla-Menashe D, Tan B , et al. MODIS Collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010,114(1):168-182.
doi: 10.1016/j.rse.2009.08.016 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425709002673
[17] Olofsson P, Stehman S V, Woodcock C E , et al. A global land-cover validation data set,part I:Fundamental design principles[J]. International Journal of Remote Sensing, 2012,33(18):5768-5788.
doi: 10.1080/01431161.2012.674230 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2012.674230
[18] Fritz S, McCallum I ,Schill C ,et al.Geo-Wiki.Org:The use of crowdsourcing to improve global land cover[J]. Remote Sensing, 2009,1(3):345-354.
doi: 10.3390/rs1030345 url: http://www.mdpi.com/2072-4292/1/3/345
[19] Tateishi R, Uriyangqai B, Al-Bilbisi H , et al. Production of global land cover data-GLCNMO[J]. International Journal of Digital Earth, 2011,4(1):22-49.
doi: 10.1080/17538941003777521 url: http://www.tandfonline.com/doi/abs/10.1080/17538941003777521
[20] 陆苗, 吴文斌, 张莉 , 等. 不同耕地数据集在中国区域的对比研究[J]. 中国科学(地球科学), 2016,46(11):1459-1471.
[20] Lu M, Wu W B, Zhang L , et al. A comparative analysis of five global cropland datasets in China[J]. Science China(Earth Sciences), 2016,59(12):2307-2317
[21] Congalton R . G.A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991,37(1):35-46.
doi: 10.1046/j.1365-2249.2000.01137.x url: http://linkinghub.elsevier.com/retrieve/pii/003442579190048B
[1] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[2] Jiaping WU, Yang ZHANG, Jie ZHANG, Shenglong FAN, Chao YANG, Xiaofang ZHANG. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast[J]. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
[3] ZENG Zhi, ZHOU Yongfu, DU Zhenhong, LIU Renyi. A parameterized evaluation model of similarity on multi-target retrieval for remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech