Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 51-58     DOI: 10.6046/gtzyyg.2019.02.08
|
Bayer interpolation for video satellite images
Jiaqi WU1,2, Taoyang WANG2(), Yufen PENG3, Guo ZHANG4
1.School of Geomatics, Liaoning Technical University, Fuxin 123000, China
2.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
3.Hubei Geomatics Technology Group Stock Co., Ltd., Wuhan 430074, China
4.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Download: PDF(8729 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Video satellite capture color video data are obtained by using the single CMOS sensor with color filter array (CFA) Bayer pattern. To obtain the full color image sequences, researchers should perform the processing of Bayer image interpolation. Aimed at the interpolation of satellite video Bayer image, the authors propose a improved method based on the signal filter reconstruction of luminance and chrominance. Firstly, band-pass filters are used for extracting luminance and chrominance signal. And the initial reconstruction result can be obtained according to the Bayer spatial model. Moreover, median filtering in non-smooth region and edge direction interpolation in the smooth region are applied to the G-B or G-R difference band for updating the green band. In the end, the red band and blue band are also updated in the new G-B or G-R difference band. To verify the feasibility of the proposed method, the authors tested 4 video Bayer image of Jilin-1 01 and 03 and compared the obtained results with two classic methods. The experimental results show that method designed by the authors has the best comprehensive performance both in subjective evaluation and objective evaluation. The reconstructed image quality is good and has no obvious noise and pseudo-color effects; in addition, the edge is sharp and clear. The method can be used for satellite video further processing and application.

Keywords video satellite      Bayer interpolation      Bayer model      median filter      edge direction     
:  TP391  
Corresponding Authors: Taoyang WANG     E-mail: wangtaoyang@whu.edu.cn
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiaqi WU
Taoyang WANG
Yufen PENG
Guo ZHANG
Cite this article:   
Jiaqi WU,Taoyang WANG,Yufen PENG, et al. Bayer interpolation for video satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(2): 51-58.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.08     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/51
Fig.1  Bayer pattern
Fig.2  3D frequency response figure of the 3 filters
Fig.3  Bayer interpolation pattern
Fig.4  Flow chart of the method
参数 视频01星 视频03星
轨道高度/km 650 535
轨道倾角/(°) 98(太阳同步) 97.5左右(太阳同步)
侧摆能力/(°) ±45 ±45
连续拍摄时长/s 120 120
成像模式 凝视和半凝视 凝视、半凝视、夜视和推扫
空间分辨率/m 1.13 <1
灰度量化/bits 8 8
Tab.1  Parameters comparison between Jilin-1 video satellite 01 and 03
Fig.5  Bayer interpolation reconstruction results
Fig.6  Image ROIs
Tab.2  Comparison of reconstruction detail by different methods
影像 模糊比 噪声比
TSD方法 LSLCD方法 本文方法 TSD方法 LSLCD方法 本文方法
01星农田 0.904 5 0.938 0 0.907 7 0.400 8 0.397 4 0.407 7
01星林地 0.915 4 0.936 0 0.911 3 0.416 9 0.421 4 0.412 6
03星屋顶 0.986 7 0.989 4 0.986 2 0.418 4 0.421 3 0.422 3
03星机动车 0.939 8 0.950 0 0.912 2 0.391 2 0.389 5 0.391 0
平均值 0.936 6 0.953 4 0.929 3 0.406 8 0.407 4 0.408 4
Tab.3  Blur/noise ratio comparison between Bayer interpolation reconstruction results
[1] 张过 . 卫星视频处理与应用进展[J]. 应用科学学报, 2016,34(4):361-370.
doi: 10.3969/j.issn.0255-8297.2016.04.001
[1] Zhang G . Satellite video processing and applications[J]. Journal of Applied Sciences, 2016,34(4):361-370.
[2] 张过 . 高分辨率视频卫星标准产品分级体系[M]. 北京: 科学出版社, 2017.
[2] Zhang G. High Resolution Video Satellite Standard Product Staging Hierarchy[M]. Beijing: Science Press, 2017.
[3] 吴佳奇, 张过, 汪韬阳 , 等. 结合运动平滑约束与灰度特征的卫星视频点目标跟踪[J]. 测绘学报, 2017,46(9):1135-1146.
[3] Wu J Q, Zhang G, Wang T Y , et al. Satellite video point-target tracking in combination with motion smoothness constraint and grayscale feature[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(9):1135-1146.
[4] 袁益琴, 何国金, 江威 , 等. 遥感视频卫星应用展望[J]. 国土资源遥感, 2018,30(3):1-8.doi: 10.6046/gtzyyg.2018.03.01.
[4] Yuan Y Q, He G J, Jiang W , et al. Application of earth observation system of video satellite[J]. Remote Sensing for Land and Resources, 2018,30(3):1-8.doi: 10.6046/gtzyyg.2018.03.01.
[5] Blu T, Thévenaz P, Unser M . Linear interpolation revitalized[J]. IEEE Transactions on Image Process, 2004,13(5):710-719.
doi: 10.1109/TIP.2004.826093 url: http://ieeexplore.ieee.org/document/1288196/
[6] 徐少雄, 张宇, 陈长征 , 等. 低复杂度Bayer图像色彩重建算法[J]. 液晶与显示, 2016,31(2):179-184.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ160322000654x4A7D0
[6] Xu S X, Zhang Y, Chen C Z , et al. Low complexity demosaicing algorithm for Bayer pattern image[J]. Chinese Journal of Liquid Crystals and Displays, 2016,31(2):179-184.
[7] Lukac R, Martin K, Plataniotis K N . Demosaicked image post-pro-cessing using local color ratios[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14(6):914-920.
doi: 10.1109/TCSVT.2004.828316 url: http://ieeexplore.ieee.org/document/1302174/
[8] 赵亮, 张宇烽, 黄长宁 . 基于色差空间的低复杂度Bayer图像插值算法[J]. 航天返回与遥感, 2016,37(3):128-138.
doi: 10.3969/j.issn.1009-8518.2016.03.015
[8] Zhao L, Zhang Y F, Huang C N . A low complexity interpolation algorithm for Bayer image based on color difference space[J]. Spacecraft Recovery and Remote Sensing, 2016,37(3):128-138.
[9] Duran J, Buades A . Self-similarity and spectral correlation adaptive algorithm for color demosaicking[J]. IEEE Transactions on Image Process, 2014,23(9):4031-4040.
doi: 10.1109/TIP.2014.2341928 url: http://ieeexplore.ieee.org/document/6862910/
[10] Gunturk B, Altunbasak Y, Mersereau R M . Color plane interpolation using alternating projections[J]. IEEE Transactions on Image Processing, 2002,11(9):997-1013.
doi: 10.1109/TIP.2002.801121 url: http://ieeexplore.ieee.org/document/1036049/
[11] Korneliussen J T, Hirakawa K . Camera processing with chromatic aberration[J]. IEEE Transactions on Image Processing, 2014,23(10):4539-4552.
doi: 10.1109/TIP.2014.2350911 url: http://ieeexplore.ieee.org/document/6882180/
[12] Pekkucuksen I, Altunbasak Y . Multiscale gradients-based color filter array interpolation[J]. IEEE Transactions on Image Processing, 2013,22(1):157-165.
doi: 10.1109/TIP.2012.2210726 url: http://ieeexplore.ieee.org/document/6253257/
[13] Sreegadha G S . Image interpolation based on multi scale gradients[J]. Procedia Computer Science, 2016,85:713-724.
doi: 10.1016/j.procs.2016.05.258 url: https://linkinghub.elsevier.com/retrieve/pii/S1877050916306081
[14] Dubois E . Frequency-domain methods for demosaicking of Bayer-sampled color image[J]. IEEE Signal Processing Letters, 2005,12(12):847-850.
doi: 10.1109/LSP.2005.859503 url: http://ieeexplore.ieee.org/document/1542115/
[15] Jeon G, Dubois E . Demosaicking of noisy Bayer-sampled color images with least-squares luma-chroma demultiplexing and noise level estimation[J]. IEEE Transactions on Image Processing, 2013,22(1):146-156.
doi: 10.1109/TIP.2012.2214041 url: http://ieeexplore.ieee.org/document/6272349/
[16] Su C Y . Low-complexity hybrid demosaicing for color filter arrays[J]. Journal of the Chinese Institute of Engineerings, 2008,31(1):173-179.
doi: 10.1080/02533839.2008.9671371 url: http://www.tandfonline.com/doi/abs/10.1080/02533839.2008.9671371
[17] 王红卫 . 贝尔图像插值与无损编码研究[D]. 太原:太原理工大学, 2010.
[17] Wang H W . Reseach on Image Interpolation and Lossless Compression Based on Bayer Pattern[D]. Taiyuan:Taiyuan University of Technology, 2010.
[18] Dubois E. Filter design for adaptive frequency-domain Bayer demosaicking [C]//IEEE International Conference on Image Processing.Atlanta:IEEE, 2006: 2705-2708.
[19] Choi M G, Jung J H, Jeon J W . No-reference image quality assessment using blur and noise[J]. International Journal of Computer Science and Engineering, 2009,3(2):76-80.
[20] Aguilar M A, Saldaña M, Aguilar F J , et al. Comparing geometric and radiometric information from GeoEye-1 and WorldView-2 multispectral imagery[J]. European Journal of Remote Sensing, 2014,47(1):717-738.
doi: 10.5721/EuJRS20144741 url: https://www.tandfonline.com/doi/full/10.5721/EuJRS20144741
[1] Yiqin YUAN, Guojin HE, Wei JIANG, Guizhou WANG. Application of earth observation system of video satellite[J]. Remote Sensing for Land & Resources, 2018, 30(3): 1-8.
[2] ZHANG Qian. Remote sensing image de-noising algorithm based on double discrete wavelet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 14-20.
[3] ZHANG Fan. Self-adaptive restoration for remote sensing noise images based on improved NAS-RIF algorithm[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 105-111.
[4] HAO Yan-Ling, TANG Yan-Hong, LU Zhi-Zhong. THE ALGORITHM FOR NOISE DETECTION AND FILTERING OF THE X-BAND NAUTICAL RADAR IMAGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech